1
|
Pojar K, Reckendorfer D, Strauss J, Szaffich S, Ahmadi-Erber S, Schippers T, Berraondo P, Orlinger KK, Raguz J, Lauterbach H. Combining local cytokine delivery and systemic immunization with recombinant artLCMV boosts antitumor efficacy in several preclinical tumor models. Oncoimmunology 2025; 14:2514040. [PMID: 40492380 DOI: 10.1080/2162402x.2025.2514040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 05/22/2025] [Accepted: 05/23/2025] [Indexed: 06/12/2025] Open
Abstract
Among the plethora of cancer immune evasion mechanisms, T-cell-inhibiting factors within the tumor microenvironment impose a major challenge for the development of novel immunotherapies. Strategies to overcome immunosuppression and remodel the TME are therefore urgently needed. Therapeutic cancer vaccines based on engineered arenaviruses have been proven to generate potent tumor specific CD8+ T-cell responses in preclinical models and cancer patients. Despite signs of clinical activity as monotherapy, combination therapies are needed to further increase the therapeutic effect. To address this need, we evaluated the efficacy of recombinant vectors based on lymphocytic choriomeningitis virus encoding the T-cell stimulating cytokines IL-7, IL-12 and IL-15 with or without tumor-associated antigens. These vectors were tested in three different mouse tumor models (TC-1, MC-38 and B16.F10). Our results demonstrate that only IL-12 encoding vectors led to increased immunogenicity and efficacy, which, after systemic administration, was associated with adverse events. The safest and most potent regimen consisted of systemic vaccination with tumor antigen encoding vectors and local injection of IL-12-encoding vectors. A single round of this treatment regimen resulted in 86-100% tumor-free mice and warrants further investigation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | | | | | | |
Collapse
|
2
|
Raguz J, Pinto C, Pölzlbauer T, Habbeddine M, Rosskopf S, Strauß J, Just V, Schmidt S, Bidet Huang K, Stemeseder F, Schippers T, Stewart E, Jez J, Berraondo P, Orlinger KK, Lauterbach H. Preclinical evaluation of two phylogenetically distant arenavirus vectors for the development of novel immunotherapeutic combination strategies for cancer treatment. J Immunother Cancer 2024; 12:e008286. [PMID: 38631709 PMCID: PMC11029282 DOI: 10.1136/jitc-2023-008286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Engineered arenavirus vectors have recently been developed to leverage the body's immune system in the fight against chronic viral infections and cancer. Vectors based on Pichinde virus (artPICV) and lymphocytic choriomeningitis virus (artLCMV) encoding a non-oncogenic fusion protein of human papillomavirus (HPV)16 E6 and E7 are currently being tested in patients with HPV16+ cancer, showing a favorable safety and tolerability profile and unprecedented expansion of tumor-specific CD8+ T cells. Although the strong antigen-specific immune response elicited by artLCMV vectors has been demonstrated in several preclinical models, PICV-based vectors are much less characterized. METHODS To advance our understanding of the immunobiology of these two vectors, we analyzed and compared their individual properties in preclinical in vivo and in vitro systems. Immunogenicity and antitumor effect of intratumoral or intravenous administration of both vectors, as well as combination with NKG2A blockade, were evaluated in naïve or TC-1 mouse tumor models. Flow cytometry, Nanostring, and histology analysis were performed to characterize the tumor microenvironment (TME) and T-cell infiltrate following treatment. RESULTS Despite being phylogenetically distant, both vectors shared many properties, including preferential infection and activation of professional antigen-presenting cells, and induction of potent tumor-specific CD8+ T-cell responses. Systemic as well as localized treatment induced a proinflammatory shift in the TME, promoting the infiltration of inducible T cell costimulator (ICOS)+CD8+ T cells capable of mediating tumor regression and prolonging survival in a TC-1 mouse tumor model. Still, there was evidence of immunosuppression built-up over time, and increased expression of H2-T23 (ligand for NKG2A T cell inhibitory receptor) following treatment was identified as a potential contributing factor. NKG2A blockade improved the antitumor efficacy of artARENA vectors, suggesting a promising new combination approach. This demonstrates how detailed characterization of arenavirus vector-induced immune responses and TME modulation can inform novel combination therapies. CONCLUSIONS The artARENA platform represents a strong therapeutic vaccine approach for the treatment of cancer. The induced antitumor immune response builds the backbone for novel combination therapies, which warrant further investigation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Ethan Stewart
- Vienna BioCenter Core Facilities GmbH (VBCF), Vienna, Austria
| | - Jakub Jez
- Vienna BioCenter Core Facilities GmbH (VBCF), Vienna, Austria
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | | | | |
Collapse
|
3
|
Purde MT, Cupovic J, Palmowski YA, Makky A, Schmidt S, Rochwarger A, Hartmann F, Stemeseder F, Lercher A, Abdou MT, Bomze D, Besse L, Berner F, Tüting T, Hölzel M, Bergthaler A, Kochanek S, Ludewig B, Lauterbach H, Orlinger KK, Bald T, Schietinger A, Schürch CM, Ring SS, Flatz L. A replicating LCMV-based vaccine for the treatment of solid tumors. Mol Ther 2024; 32:426-439. [PMID: 38058126 PMCID: PMC10861942 DOI: 10.1016/j.ymthe.2023.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/31/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
Harnessing the immune system to eradicate tumors requires identification and targeting of tumor antigens, including tumor-specific neoantigens and tumor-associated self-antigens. Tumor-associated antigens are subject to existing immune tolerance, which must be overcome by immunotherapies. Despite many novel immunotherapies reaching clinical trials, inducing self-antigen-specific immune responses remains challenging. Here, we systematically investigate viral-vector-based cancer vaccines encoding a tumor-associated self-antigen (TRP2) for the treatment of established melanomas in preclinical mouse models, alone or in combination with adoptive T cell therapy. We reveal that, unlike foreign antigens, tumor-associated antigens require replication of lymphocytic choriomeningitis virus (LCMV)-based vectors to break tolerance and induce effective antigen-specific CD8+ T cell responses. Immunization with a replicating LCMV vector leads to complete tumor rejection when combined with adoptive TRP2-specific T cell transfer. Importantly, immunization with replicating vectors leads to extended antigen persistence in secondary lymphoid organs, resulting in efficient T cell priming, which renders previously "cold" tumors open to immune infiltration and reprograms the tumor microenvironment to "hot." Our findings have important implications for the design of next-generation immunotherapies targeting solid cancers utilizing viral vectors and adoptive cell transfer.
Collapse
Affiliation(s)
- Mette-Triin Purde
- Institute of Immunobiology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Jovana Cupovic
- Institute of Immunobiology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Yannick A Palmowski
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, 72076 Tübingen, Germany
| | - Ahmad Makky
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, 72076 Tübingen, Germany
| | | | - Alexander Rochwarger
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, 72076 Tübingen, Germany
| | - Fabienne Hartmann
- Institute of Immunobiology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | | | - Alexander Lercher
- Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Marie-Therese Abdou
- Institute of Immunobiology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - David Bomze
- Institute of Immunobiology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Lenka Besse
- Laboratory of Experimental Oncology, Department of Oncology and Hematology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Fiamma Berner
- Institute of Immunobiology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Thomas Tüting
- Laboratory of Experimental Dermatology, Department of Dermatology, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Michael Hölzel
- Institute of Experimental Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Andreas Bergthaler
- Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Stefan Kochanek
- Department of Gene Therapy, Ulm University, 89081 Ulm, Germany
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | | | | | - Tobias Bald
- QIMR Medical Research Institute, Herston, QLD 4006, Australia
| | | | - Christian M Schürch
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, 72076 Tübingen, Germany
| | - Sandra S Ring
- Institute of Immunobiology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Lukas Flatz
- Institute of Immunobiology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland; Department of Dermatology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland.
| |
Collapse
|
4
|
STOKES CALEB, J. MELVIN ANN. Viral Infections of the Fetus and Newborn. AVERY'S DISEASES OF THE NEWBORN 2024:450-486.e24. [DOI: 10.1016/b978-0-323-82823-9.00034-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Ring SS, Królik M, Hartmann F, Schmidt E, Ali OH, Ludewig B, Kochanek S, Flatz L. Heterologous Prime Boost Vaccination Induces Protective Melanoma-Specific CD8 + T Cell Responses. MOLECULAR THERAPY-ONCOLYTICS 2020; 19:179-187. [PMID: 33209978 PMCID: PMC7658660 DOI: 10.1016/j.omto.2020.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/06/2020] [Indexed: 12/16/2022]
Abstract
Cancer vaccination aims at inducing an adaptive immune response against tumor-derived antigens. In this study, we utilize recombinant human adenovirus serotype 5 (rAd5) and recombinant lymphocytic choriomeningitis virus (rLCMV)-based vectors expressing the melanocyte differentiation antigen gp100. In contrast to single or homologous vaccination, a heterologous prime boost vaccination starting with a rAd5-gp100 prime immunization followed by a rLCMV-gp100 boost injection induces a high magnitude of polyfunctional gp100-specific CD8+ T cells. Our data indicate that an optimal T cell induction is dependent on the order and interval of the vaccinations. A prophylactic prime boost vaccination with rAd5- and rLCMV-gp100 protects mice from a B16.F10 melanoma challenge. In the therapeutic setting, combination of the vaccination with low-dose cyclophosphamide showed a synergistic effect and significantly delayed tumor growth. Our findings suggest that heterologous viral vector prime boost immunizations can mediate tumor control in a mouse melanoma model.
Collapse
Affiliation(s)
- Sandra S Ring
- Institute of Immunobiology, Kantonsspital St.Gallen, Rorschacher Strasse 95, 9007 St.Gallen, Switzerland
| | - Michał Królik
- Institute of Immunobiology, Kantonsspital St.Gallen, Rorschacher Strasse 95, 9007 St.Gallen, Switzerland
| | - Fabienne Hartmann
- Institute of Immunobiology, Kantonsspital St.Gallen, Rorschacher Strasse 95, 9007 St.Gallen, Switzerland
| | - Erika Schmidt
- Department of Gene Therapy, Ulm University, Helmholtzstrasse 8, 89081 Ulm, Germany
| | - Omar Hasan Ali
- Institute of Immunobiology, Kantonsspital St.Gallen, Rorschacher Strasse 95, 9007 St.Gallen, Switzerland.,Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St.Gallen, Rorschacher Strasse 95, 9007 St.Gallen, Switzerland.,Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Stefan Kochanek
- Department of Gene Therapy, Ulm University, Helmholtzstrasse 8, 89081 Ulm, Germany
| | - Lukas Flatz
- Institute of Immunobiology, Kantonsspital St.Gallen, Rorschacher Strasse 95, 9007 St.Gallen, Switzerland.,Department of Dermatology, University Hospital Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland.,Department of Oncology and Hematology, Kantonsspital St.Gallen, Rorschacher Strasse 95, 9007 St.Gallen, Switzerland.,Department of Dermatology, Kantonsspital St.Gallen, Rorschacher Strasse 95, 9007 St.Gallen, Switzerland
| |
Collapse
|
6
|
Schmidt S, Bonilla WV, Reiter A, Stemeseder F, Kleissner T, Oeler D, Berka U, El-Gazzar A, Kiefmann B, Schulha SC, Raguz J, Habbeddine M, Scheinost M, Qing X, Lauterbach H, Matushansky I, Pinschewer DD, Orlinger KK. Live-attenuated lymphocytic choriomeningitis virus-based vaccines for active immunotherapy of HPV16-positive cancer. Oncoimmunology 2020; 9:1809960. [PMID: 33457095 PMCID: PMC7781782 DOI: 10.1080/2162402x.2020.1809960] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Infection with human papillomavirus (HPV) is associated with a variety of cancer types and limited therapy options. Therapeutic cancer vaccines targeting the HPV16 oncoproteins E6 and E7 have recently been extensively explored as a promising immunotherapy approach to drive durable antitumor T cell immunity and induce effective tumor control. With the goal to achieve potent and lasting antitumor T cell responses, we generated a novel lymphocytic choriomeningitis virus (LCMV)-based vaccine, TT1-E7E6, targeting HPV16 E6 and E7. This replication-competent vector was stably attenuated using a three-segmented viral genome packaging strategy. Compared to wild-type LCMV, TT1-E7E6 demonstrated significantly reduced viremia and CNS immunopathology. Intravenous vaccination of mice with TT1-E7E6 induced robust expansion of HPV16-specific CD8+ T cells producing IFN-γ, TNF-α and IL-2. In the HPV16 E6 and E7-expressing TC-1 tumor model, mice immunized with TT1-E7E6 showed significantly delayed tumor growth or complete tumor clearance accompanied with prolonged survival. Tumor control by TT1-E7E6 was also achieved in established large-sized tumors in this model. Furthermore, a combination of TT1-E7E6 with anti-PD-1 therapy led to enhanced antitumor efficacy with complete tumor regression in the majority of tumor-bearing mice that were resistant to anti-PD-1 treatment alone. TT1-E7E6 vector itself did not exhibit oncolytic properties in TC-1 cells, while the antitumor effect was associated with the accumulation of HPV16-specific CD8+ T cells with reduced PD-1 expression in the tumor tissues. Together, our results suggest that TT1-E7E6 is a promising therapeutic vaccine for HPV-positive cancers.
Collapse
Affiliation(s)
| | - Weldy V Bonilla
- Department of Biomedicine - Haus Petersplatz, Petersplatz 10, Division of Experimental Virology, University of Basel, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Daniel D Pinschewer
- Department of Biomedicine - Haus Petersplatz, Petersplatz 10, Division of Experimental Virology, University of Basel, Basel, Switzerland
| | | |
Collapse
|
7
|
Schleiss MR, Marsh KJ. Viral Infections of the Fetus and Newborn. AVERY'S DISEASES OF THE NEWBORN 2018:482-526.e19. [DOI: 10.1016/b978-0-323-40139-5.00037-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Congenital Cytomegalovirus: a "Now" Problem-No Really, Now. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00491-16. [PMID: 27795304 DOI: 10.1128/cvi.00491-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite the clear need, progress toward a vaccine for congenital cytomegalovirus (CMV) has been slow. However, recent events have provided new interest, and several vaccine candidates are either in clinical trials or the trials are close to starting. In this issue of Clinical and Vaccine Immunology, Schleiss and colleagues show that a nonreplicating lymphocytic choriomeningitis virus (rLCMV)-vectored vaccine expressing CMV glycoprotein B (gB) and/or pp65 induces B and T cells and improves pup survival in a guinea pig model of congenital CMV infection (Clin Vaccine Immunol 24:e00300-16, 2017, https://doi.org/10.1128/CVI.00300-16). The combination vaccine appeared to be the most effective.
Collapse
|
9
|
Ertl HC. Viral vectors as vaccine carriers. Curr Opin Virol 2016; 21:1-8. [PMID: 27327517 DOI: 10.1016/j.coviro.2016.06.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 12/25/2022]
Abstract
This chapter reviews the performance of viral vectors based on adenoviruses or adeno-associated virus as vaccine carriers for infectious diseases. Replication-defective adenovirus vectors based on multiple human or non-human serotypes have consistently induced potent transgene product-specific B and T cell responses and are increasingly being explored in human clinical trials. The immunogenicity of most vectors based on adeno-associated virus vectors has been poor with the exception of a recently described hybrid vector from rhesus macaques that due to its ability to induce potent responses in mice warrant further investigation.
Collapse
Affiliation(s)
- Hildegund Cj Ertl
- Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, United States.
| |
Collapse
|