1
|
A novel synthetic DNA vaccine elicits protective immune responses against Powassan virus. PLoS Negl Trop Dis 2020; 14:e0008788. [PMID: 33119599 PMCID: PMC7595275 DOI: 10.1371/journal.pntd.0008788] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 09/10/2020] [Indexed: 01/07/2023] Open
Abstract
Powassan virus (POWV) infection is a tick-borne emerging infectious disease in the United States and North America. Like Zika virus, POWV is a member of the family Flaviviridae. POWV causes severe neurological sequalae, meningitis, encephalitis, and can cause death. Although the risk of human POWV infection is low, its incidence in the U.S. in the past 16 years has increased over 300%, urging immediate attention. Despite the disease severity and its growing potential for threatening larger populations, currently there are no licensed vaccines which provide protection against POWV. We developed a novel synthetic DNA vaccine termed POWV-SEV by focusing on the conserved portions of POWV pre-membrane and envelope (prMEnv) genes. A single immunization of POWV-SEV elicited broad T and B cell immunity in mice with minimal cross-reactivity against other flaviviruses. Antibody epitope mapping demonstrated a similarity between POWV-SEV-induced immune responses and those elicited naturally in POWV-infected patients. Finally, POWV-SEV induced immunity provided protection against POWV disease in lethal challenge experiments.
Collapse
|
2
|
Rey-Jurado E, Tapia F, Muñoz-Durango N, Lay MK, Carreño LJ, Riedel CA, Bueno SM, Genzel Y, Kalergis AM. Assessing the Importance of Domestic Vaccine Manufacturing Centers: An Overview of Immunization Programs, Vaccine Manufacture, and Distribution. Front Immunol 2018; 9:26. [PMID: 29403503 PMCID: PMC5778105 DOI: 10.3389/fimmu.2018.00026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 01/04/2018] [Indexed: 12/03/2022] Open
Abstract
Vaccines have significantly reduced the detrimental effects of numerous human infectious diseases worldwide, helped to reduce drastically child mortality rates and even achieved eradication of major pathogens, such as smallpox. These achievements have been possible due to a dedicated effort for vaccine research and development, as well as an effective transfer of these vaccines to public health care systems globally. Either public or private institutions have committed to developing and manufacturing vaccines for local or international population supply. However, current vaccine manufacturers worldwide might not be able to guarantee sufficient vaccine supplies for all nations when epidemics or pandemics events could take place. Currently, different countries produce their own vaccine supplies under Good Manufacturing Practices, which include the USA, Canada, China, India, some nations in Europe and South America, such as Germany, the Netherlands, Italy, France, Argentina, and Brazil, respectively. Here, we discuss some of the vaccine programs and manufacturing capacities, comparing the current models of vaccine management between industrialized and developing countries. Because local vaccine production undoubtedly provides significant benefits for the respective population, the manufacture capacity of these prophylactic products should be included in every country as a matter of national safety.
Collapse
Affiliation(s)
- Emma Rey-Jurado
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Tapia
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Natalia Muñoz-Durango
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Margarita K. Lay
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Leandro J. Carreño
- Millennium Institute on Immunology and Immunotherapy, Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|