1
|
Sun X, He Q, Gao Q, Gu L, Miao Y. Smart RNA Sequencing Reveals the Toxicological Effects of Diisobutyl Phthalate (DiBP) in Porcine Oocytes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39140966 DOI: 10.1021/acs.est.4c05462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Diisobutyl phthalate (DiBP) is commonly used in the plastics industry, and recent studies have shown that environmental exposure and accumulation in the food chain caused inflammation in some organs. However, the underlying mechanisms by which DiBP affects oocyte quality have not yet been fully defined. We used immunostaining and fluorescence to evaluate the effects of DiBP exposure and demonstrated that it impaired the morphology of matured porcine oocytes through generation of cytoplasmic fragmentation, accompanied by the perturbed dynamics of the spindle and actin cytoskeleton, misdistributed endoplasmic reticulum, as well as partial exocytosis of cortical granules and ovastacin. Moreover, analysis of Smart RNA-seq found that DiBP-induced aberrant oocyte maturation could be induced by abnormal mitochondrial function and apoptosis. Importantly, we discovered that supplementation with pyrroloquinoline quinone (PQQ) significantly attenuated the meiotic abnormalities induced by DiBP exposure through the modulation of reactive oxygen species levels. Our findings demonstrated that DiBP exposure adversely affects oocyte meiotic maturation and that PQQ supplementation was an effective strategy to protect oocyte quality against DiBP exposure.
Collapse
Affiliation(s)
- Xiaofan Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qinyuan He
- Department of Obstetrics and Gynecology, the Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, Jiangsu, China
| | - Qian Gao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ling Gu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yilong Miao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Wang Q, Huang X, Shao Y, Liu Q, Shen J, Xia J, Zhang Z, Wang C. The implication of long non-coding RNA expression profile in rheumatoid arthritis: Correlation with treatment response to tumor necrosis factor inhibitor. Mod Rheumatol 2023; 33:111-121. [PMID: 35141748 DOI: 10.1093/mr/roab128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/08/2021] [Accepted: 12/18/2021] [Indexed: 01/05/2023]
Abstract
OBJECTIVE This study aimed to investigate the linkage of long non-coding RNA (lncRNA) expression profile with etanercept response in rheumatoid arthritis (RA) patients. METHODS Peripheral blood mononuclear cell (PBMC) samples were collected from 80 RA patients prior to etanercept treatment. Samples from eight responders and eight non-responders at week 24 (W24) were proposed to RNA-sequencing, then 10 candidate lncRNAs were sorted and their PBMC expressions were validated by reverse transcription quantitative chain reaction (RT-qPCR) in 80 RA patients. Subsequently, clinical response by lncRNA (CRLnc) prediction model was established. RESULTS RNA-sequencing identified 254 up-regulated and 265 down-regulated lncRNAs in W24 responders compared with non-responders, which were enriched in immune or joint related pathways such as B-cell receptor signaling, osteoclast differentiation and T-cell receptor signaling pathways, etc. By reverse transcription quantitative chain reaction (RT-qPCR) validation: Two lncRNAs were correlated with W4 response, three lncRNAs were correlated with W12 response, seven lncRNAs were correlated with W24 response. Subsequently, to construct and validate CRLnc prediction model, 80 RA patients were randomly divided into test set (n = 40) and validation set (n = 40). In the test set, lncRNA RP3-466P17.2 (OR = 9.743, P = .028), RP11-20D14.6 (OR = 10.935, P = .007), RP11-844P9.2 (OR = 0.075, P = .022), and TAS2R64P (OR = 0.044, P = .016) independently related to W24 etanercept response; then CRLnc prediction model integrating these four lncRNAs presented a good value in predicting W24 etanercept response (Area Under Curve (AUC): 0.956, 95%CI: 0.896-1.000). However, in the validation set, the CRLnc prediction model only exhibited a certain value in predicting W24 etanercept response (AUC: 0.753, 95%CI: 0.536-0.969). CONCLUSIONS CRLnc prediction model is potentially a useful tool to instruct etanercept treatment in RA patients.
Collapse
Affiliation(s)
- Qiubo Wang
- Department of Clinical Laboratory, Wuxi 9th Affiliated Hospital of Soochow University (Wuxi 9th People's Hospital), Wuxi, China
| | | | - Yang Shao
- Department of Sports Medicine, Wuxi Traditional Chinese Medicine Hospital, Wuxi, China
| | - Qingyang Liu
- Department of Clinical Laboratory, Wuxi 9th Affiliated Hospital of Soochow University (Wuxi 9th People's Hospital), Wuxi, China
| | - Jin Shen
- Department of Clinical Laboratory, Wuxi 9th Affiliated Hospital of Soochow University (Wuxi 9th People's Hospital), Wuxi, China
| | - Jinjun Xia
- Department of Clinical Laboratory, Wuxi 9th Affiliated Hospital of Soochow University (Wuxi 9th People's Hospital), Wuxi, China
| | - Zhiqian Zhang
- Department of Clinical Laboratory, Wuxi 9th Affiliated Hospital of Soochow University (Wuxi 9th People's Hospital), Wuxi, China
| | - Chunxin Wang
- Department of Medicine Laboratory, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China.,Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Van Campenhout R, Cogliati B, Vinken M. Effects of acute and chronic disease on cell junctions in mouse liver. EXCLI JOURNAL 2023; 22:1-11. [PMID: 36660194 PMCID: PMC9837383 DOI: 10.17179/excli2022-5559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 01/21/2023]
Abstract
Cell junctions, including anchoring, occluding and communicating junctions, play an indispensable role in tissue architecture and homeostasis. Consequently, malfunctioning of cell junctions is linked with a wide range of disorders, including in liver. The present study was set up to investigate the effects of acute and chronic disease induced by chemical compounds on hepatic cell junctions in mice. Mice were either overdosed with paracetamol or repeatedly administered carbon tetrachloride followed by sampling at 24 hours or 8 weeks, respectively. mRNA and protein expression levels of adherens, gap and tight junction components were measured in liver using reverse transcription quantitative real-time polymerase chain reaction analysis and immunoblot techniques, respectively. It was found that protein levels of the adherens junction building blocks β-catenin and γ-catenin, the gap junction components Cx26 and Cx32, and the tight junction constituent zonula occludens 2 were decreased, while mRNA levels of the adherens junction building block E-cadherin, and the tight junction constituent zonula occludens 2 and claudin 1 were upregulated following paracetamol overdosing. Repeated administration of carbon tetrachloride increased protein levels of E-cadherin, β-catenin, Cx26, Cx32, Cx43 and claudin 1. The latter was reflected at the mRNA level. In conclusion, acute and chronic liver disease have different effects on cell junctions in liver.
Collapse
Affiliation(s)
- Raf Van Campenhout
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bruno Cogliati
- School of Veterinary Medicine and Animal Science, Department of Pathology, University of São Paulo, São Paulo, Brazil
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium,*To whom correspondence should be addressed: Mathieu Vinken, Vrije Universiteit Brussel, Entity of In Vitro Toxicology and Dermato-Cosmetology, Laarbeeklaan 103, B-1090 Brussels, Belgium; Tel: +32-2-4774587, Fax: +32-2-4774582, E-mail:
| |
Collapse
|
4
|
Leroy K, Vilas-Boas V, Gijbels E, Vanderborght B, Devisscher L, Cogliati B, Van Den Bossche B, Colle I, Vinken M. Expression of connexins and pannexins in diseased human liver. EXCLI JOURNAL 2022; 21:1111-1129. [PMID: 36381643 PMCID: PMC9650699 DOI: 10.17179/excli2022-5163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/17/2022] [Indexed: 01/24/2023]
Abstract
Connexin proteins can form hexameric hemichannels and gap junctions that mediate paracrine and direct intercellular communication, respectively. Gap junction activity is crucial for the maintenance of hepatic homeostasis, while connexin hemichannels become particularly active in liver disease, such as hepatitis, fibrosis, cholestasis or even hepatocellular carcinoma. Channels consisting of connexin-like proteins named pannexins have been directly linked to liver inflammation and cell death. The goal of the present study was to characterize the expression and subcellular localization of connexins and pannexins in liver of patients suffering from various chronic and neoplastic liver diseases. Specifically, real-time quantitative reverse transcription polymerase chain reaction, immunoblotting and immunohistochemistry analyses were performed on human liver biopsies. It was found that pannexin1 and pannexin2 gene expression are correlated to a certain degree, as is pannexin1 protein expression with connexin32 and connexin43 protein expression. Furthermore, this study is the first to detect pannexin3 in human patient liver biopsies via both immunoblot and immunohistochemistry.
Collapse
Affiliation(s)
- Kaat Leroy
- Department of Pharmaceutical and Pharmacological Sciences, Entity of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Vânia Vilas-Boas
- Department of Pharmaceutical and Pharmacological Sciences, Entity of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Eva Gijbels
- Department of Pharmaceutical and Pharmacological Sciences, Entity of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Bart Vanderborght
- Department of Basic and Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Universiteit Gent, Corneel Heymanslaan 10, 9000 Gent, Belgium
| | - Lindsey Devisscher
- Department of Basic and Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Universiteit Gent, Corneel Heymanslaan 10, 9000 Gent, Belgium
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, Cidade Universitária, 05508-270, São Paulo, Brazil
| | - Bert Van Den Bossche
- Department of Hepatobiliary and Pancreatic Surgery, Algemeen Stedelijk Ziekenhuis Campus Aalst, Merestraat 80, 9300 Aalst, Belgium
| | - Isabelle Colle
- Department of Hepatology and Gastroenterology, Algemeen Stedelijk Ziekenhuis Campus Aalst, Merestraat 80, 9300 Aalst, Belgium
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Entity of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium,*To whom correspondence should be addressed: Mathieu Vinken, Department of Pharmaceutical and Pharmacological Sciences, Entity of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; Tel.: +3224774587, E-mail:
| |
Collapse
|
5
|
Cooreman A, Caufriez A, Tabernilla A, Van Campenhout R, Leroy K, Kadam P, Sanz Serrano J, dos Santos Rodrigues B, Annaert P, Vinken M. Effects of Drugs Formerly Proposed for COVID-19 Treatment on Connexin43 Hemichannels. Int J Mol Sci 2022; 23:5018. [PMID: 35563409 PMCID: PMC9103705 DOI: 10.3390/ijms23095018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 02/07/2023] Open
Abstract
Connexin43 (Cx43) hemichannels form a pathway for cellular communication between the cell and its extracellular environment. Under pathological conditions, Cx43 hemichannels release adenosine triphosphate (ATP), which triggers inflammation. Over the past two years, azithromycin, chloroquine, dexamethasone, favipiravir, hydroxychloroquine, lopinavir, remdesivir, ribavirin, and ritonavir have been proposed as drugs for the treatment of the coronavirus disease 2019 (COVID-19), which is associated with prominent systemic inflammation. The current study aimed to investigate if Cx43 hemichannels, being key players in inflammation, could be affected by these drugs which were formerly designated as COVID-19 drugs. For this purpose, Cx43-transduced cells were exposed to these drugs. The effects on Cx43 hemichannel activity were assessed by measuring extracellular ATP release, while the effects at the transcriptional and translational levels were monitored by means of real-time quantitative reverse transcriptase polymerase chain reaction analysis and immunoblot analysis, respectively. Exposure to lopinavir and ritonavir combined (4:1 ratio), as well as to remdesivir, reduced Cx43 mRNA levels. None of the tested drugs affected Cx43 protein expression.
Collapse
Affiliation(s)
- Axelle Cooreman
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.C.); (A.T.); (R.V.C.); (K.L.); (P.K.); (J.S.S.); (B.d.S.R.)
| | - Anne Caufriez
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.C.); (A.T.); (R.V.C.); (K.L.); (P.K.); (J.S.S.); (B.d.S.R.)
| | - Andrés Tabernilla
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.C.); (A.T.); (R.V.C.); (K.L.); (P.K.); (J.S.S.); (B.d.S.R.)
| | - Raf Van Campenhout
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.C.); (A.T.); (R.V.C.); (K.L.); (P.K.); (J.S.S.); (B.d.S.R.)
| | - Kaat Leroy
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.C.); (A.T.); (R.V.C.); (K.L.); (P.K.); (J.S.S.); (B.d.S.R.)
| | - Prashant Kadam
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.C.); (A.T.); (R.V.C.); (K.L.); (P.K.); (J.S.S.); (B.d.S.R.)
| | - Julen Sanz Serrano
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.C.); (A.T.); (R.V.C.); (K.L.); (P.K.); (J.S.S.); (B.d.S.R.)
| | - Bruna dos Santos Rodrigues
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.C.); (A.T.); (R.V.C.); (K.L.); (P.K.); (J.S.S.); (B.d.S.R.)
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium;
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.C.); (A.T.); (R.V.C.); (K.L.); (P.K.); (J.S.S.); (B.d.S.R.)
| |
Collapse
|
6
|
Cooreman A, Van Campenhout R, Crespo Yanguas S, Gijbels E, Leroy K, Pieters A, Tabernilla A, Van Brantegem P, Annaert P, Cogliati B, Vinken M. Cholestasis Differentially Affects Liver Connexins. Int J Mol Sci 2020; 21:E6534. [PMID: 32906817 PMCID: PMC7116118 DOI: 10.3390/ijms21186534] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/26/2020] [Accepted: 09/05/2020] [Indexed: 12/11/2022] Open
Abstract
Connexins are goal keepers of tissue homeostasis, including in the liver. As a result, they are frequently involved in disease. The current study was set up to investigate the effects of cholestatic disease on the production of connexin26, connexin32 and connexin43 in the liver. For this purpose, bile duct ligation, a well-known trigger of cholestatic liver injury, was applied to mice. In parallel, human hepatoma HepaRG cell cultures were exposed to cholestatic drugs and bile acids. Samples from both the in vivo and in vitro settings were subsequently subjected to assessment of mRNA and protein quantities as well as to in situ immunostaining. While the outcome of cholestasis on connexin26 and connexin43 varied among experimental settings, a more generalized repressing effect was seen for connexin32. This has also been observed in many other liver pathologies and could suggest a role for connexin32 as a robust biomarker of liver disease and toxicity.
Collapse
Affiliation(s)
- Axelle Cooreman
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (A.C.); (R.V.C.); (S.C.Y.); (E.G.); (K.L.); (A.P.); (A.T.)
| | - Raf Van Campenhout
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (A.C.); (R.V.C.); (S.C.Y.); (E.G.); (K.L.); (A.P.); (A.T.)
| | - Sara Crespo Yanguas
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (A.C.); (R.V.C.); (S.C.Y.); (E.G.); (K.L.); (A.P.); (A.T.)
| | - Eva Gijbels
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (A.C.); (R.V.C.); (S.C.Y.); (E.G.); (K.L.); (A.P.); (A.T.)
| | - Kaat Leroy
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (A.C.); (R.V.C.); (S.C.Y.); (E.G.); (K.L.); (A.P.); (A.T.)
| | - Alanah Pieters
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (A.C.); (R.V.C.); (S.C.Y.); (E.G.); (K.L.); (A.P.); (A.T.)
| | - Andrés Tabernilla
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (A.C.); (R.V.C.); (S.C.Y.); (E.G.); (K.L.); (A.P.); (A.T.)
| | - Pieter Van Brantegem
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, 3000 Leuven, Belgium; (P.V.B.); (P.A.)
| | - Pieter Annaert
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, 3000 Leuven, Belgium; (P.V.B.); (P.A.)
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil;
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (A.C.); (R.V.C.); (S.C.Y.); (E.G.); (K.L.); (A.P.); (A.T.)
| |
Collapse
|
7
|
Xue K, Zhang X, Gao Z, Xia W, Qi L, Liu K. Cartilage progenitor cells combined with PHBV in cartilage tissue engineering. J Transl Med 2019; 17:104. [PMID: 30925884 PMCID: PMC6441183 DOI: 10.1186/s12967-019-1855-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/25/2019] [Indexed: 12/13/2022] Open
Abstract
Background Bone marrow-derived stem cells (BMSCs) and chondrocytes have been reported to present “dedifferentiation” and “phenotypic loss” during the chondrogenic differentiation process in cartilage tissue engineering, and cartilage progenitor cells (CPCs) are novel seeding cells for cartilage tissue engineering. In our previous study, cartilage progenitor cells from different subtypes of cartilage tissue were isolated and identified in vitro, but the study on in vivo chondrogenic characteristics of cartilage progenitor cells remained rarely. In the current study, we explored the feasibility of combining cartilage progenitor cells with poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) to produce tissue-engineered cartilage and compared the proliferation ability and chondrogenic characteristics of cartilage progenitor cells with those of bone marrow-derived stem cells and chondrocytes. Methods These three cells combined with PHBV were cultured in vitro for 1 week without chondrogenic induction and then transplanted subcutaneously into nude mice for 6 weeks. The cell-PHBV constructs were evaluated by gross observation, histological staining, glycosaminoglycan content measurement, biomechanical analysis and RT-PCR. Results The chondrocyte-PHBV constructs and CPC-PHBV constructs became an ivory-whitish cartilage-like tissue, while the BMSC-PHBV constructs became vascularized 6 weeks after the subcutaneous implantation. Histological examination showed that many typical cartilage structures were present in the chondrocyte group, some typical cartilage structures were observed in the CPC group, while no typical cartilage structures were observed in the BMSC group. Conclusions Cartilage progenitor cells may undergo chondrogenesis without chondrogenic induction and are better at chondrogenesis than BMSCs but worse than chondrocytes in the application of cartilage tissue engineering.
Collapse
Affiliation(s)
- Ke Xue
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, People's Republic of China
| | - Xiaodie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, People's Republic of China
| | - Zixu Gao
- The Second Clinical Medical College of Nanchang University, Jiangxi Medical College, Nanchang University, No. 461, Bayi Avenue, Nanchang, 330006, China
| | - Wanyao Xia
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, People's Republic of China
| | - Lin Qi
- Department of Radiology, Huadong Hospital, Fudan University, 221 West Yan-an Road, Shanghai, 200040, China.
| | - Kai Liu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, People's Republic of China.
| |
Collapse
|