1
|
Li M, Beaumont N, Ma C, Rojas J, Vu T, Harlacher M, O'Connell G, Gessner RC, Kilian H, Kasatkina L, Chen Y, Huang Q, Shen X, Lovell JF, Verkhusha VV, Czernuszewicz T, Yao J. Three-Dimensional Deep-Tissue Functional and Molecular Imaging by Integrated Photoacoustic, Ultrasound, and Angiographic Tomography (PAUSAT). IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:2704-2714. [PMID: 35442884 PMCID: PMC9563100 DOI: 10.1109/tmi.2022.3168859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Non-invasive small-animal imaging technologies, such as optical imaging, magnetic resonance imaging and x -ray computed tomography, have enabled researchers to study normal biological phenomena or disease progression in their native conditions. However, existing small-animal imaging technologies often lack either the penetration capability for interrogating deep tissues (e.g., optical microscopy), or the functional and molecular sensitivity for tracking specific activities (e.g., magnetic resonance imaging). To achieve functional and molecular imaging in deep tissues, we have developed an integrated photoacoustic, ultrasound and acoustic angiographic tomography (PAUSAT) system by seamlessly combining light and ultrasound. PAUSAT can perform three imaging modes simultaneously with complementary contrast: high-frequency B-mode ultrasound imaging of tissue morphology, microbubble-enabled acoustic angiography of tissue vasculature, and multi-spectral photoacoustic imaging of molecular probes. PAUSAT can provide three-dimensional (3D) multi-contrast images that are co-registered, with high spatial resolutions at large depths. Using PAUSAT, we performed proof-of-concept in vivo experiments on various small animal models: monitoring longitudinal development of placenta and embryo during mouse pregnancy, tracking biodistribution and metabolism of near-infrared organic dye on the whole-body scale, and detecting breast tumor expressing genetically-encoded photoswitchable phytochromes. These results have collectively demonstrated that PAUSAT has broad applicability in biomedical research, providing comprehensive structural, functional, and molecular imaging of small animal models.
Collapse
|
2
|
Kirillin M, Khilov A, Kurakina D, Orlova A, Perekatova V, Shishkova V, Malygina A, Mironycheva A, Shlivko I, Gamayunov S, Turchin I, Sergeeva E. Dual-Wavelength Fluorescence Monitoring of Photodynamic Therapy: From Analytical Models to Clinical Studies. Cancers (Basel) 2021; 13:cancers13225807. [PMID: 34830963 PMCID: PMC8616416 DOI: 10.3390/cancers13225807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Fluorescence imaging is an efficient tool in monitoring photodynamic therapy procedures allowing us to track accumulation and photobleaching of a photosensitizer (PS). Chlorin-based PSs feature high absorption in the red and blue bands of visible spectrum. Due to spectral dispersion of light penetration depth in biotissues, fluorescence signals registered upon excitation by red or blue light are formed in different measurement volumes. We present analytical and numerical models of dual-wavelength fluorescence imaging for evaluation of PS localization depth in the cases of topical administration and intravenous injection. The results of analytical and numerical simulations are in good agreement with the phantom experiments, and are translated to the in vivo imaging, which allows to interpret experimental observations in animal trials, human volunteers, and clinical studies. The proposed approach allows us to noninvasively estimate typical accumulation depths of PS localization which are consistent with the morphologically expected values. Abstract Fluorescence imaging modalities are currently a routine tool for the assessment of marker distribution within biological tissues, including monitoring of fluorescent photosensitizers (PSs) in photodynamic therapy (PDT). Conventional fluorescence imaging techniques provide en-face two-dimensional images, while depth-resolved techniques require complicated tomographic modalities. In this paper, we report on a cost-effective approach for the estimation of fluorophore localization depth based on dual-wavelength probing. Owing to significant difference in optical properties of superficial biotissues for red and blue ranges of optical spectra, simultaneous detection of fluorescence excited at different wavelengths provides complementary information from different measurement volumes. Here, we report analytical and numerical models of the dual-wavelength fluorescence imaging of PS-containing biotissues considering topical and intravenous PS administration, and demonstrate the feasibility of this approach for evaluation of the PS localization depth based on the fluorescence signal ratio. The results of analytical and numerical simulations, as well as phantom experiments, were translated to the in vivo imaging to interpret experimental observations in animal experiments, human volunteers, and clinical studies. The proposed approach allowed us to estimate typical accumulation depths of PS localization which are consistent with the morphologically expected values for both topical PS administration and intravenous injection.
Collapse
Affiliation(s)
- Mikhail Kirillin
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia
| | - Aleksandr Khilov
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia
| | - Daria Kurakina
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia
| | - Anna Orlova
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia
| | - Valeriya Perekatova
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia
| | - Veronika Shishkova
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia
- Institute of Information Technology, Mathematics and Mechanics, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia
| | - Alfia Malygina
- Center for Skin Tumor Diagnostics and Treatment, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia
| | - Anna Mironycheva
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia
- Center for Skin Tumor Diagnostics and Treatment, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia
| | - Irena Shlivko
- Center for Skin Tumor Diagnostics and Treatment, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia
| | - Sergey Gamayunov
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia
- Nizhny Novgorod Regional Oncological Hospital, Delovaya 11/1, 603126 Nizhny Novgorod, Russia
| | - Ilya Turchin
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia
| | - Ekaterina Sergeeva
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia
| |
Collapse
|