1
|
Zhang M, Cui J, Chen H, Cheng Y, Chen Q, Zong F, Lu X, Qin L, Han Y, Kuai X, Zhang Y, Chu M, Wu S, Wu J. Increased SOAT2 expression in aged regulatory T cells is associated with altered cholesterol metabolism and reduced anti-tumor immunity. Nat Commun 2025; 16:630. [PMID: 39805872 PMCID: PMC11729894 DOI: 10.1038/s41467-025-56002-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
Immune functions decline with aging, leading to increased susceptibility to various diseases including tumors. Exploring aging-related molecular targets in elderly patients with cancer is thus highly sought after. Here we find that an ER transmembrane enzyme, sterol O-acyltransferase 2 (SOAT2), is overexpressed in regulatory T (Treg) cells from elderly patients with lung squamous cell carcinoma (LSCC), while radiomics analysis of LSCC patients associates increased SOAT2 expression with reduced immune infiltration and poor prognosis. Mechanically, ex vivo human and mouse Treg cell data and in vivo mouse tumor models suggest that SOAT2 overexpression in Treg cells promotes cholesterol metabolism by activating the SREBP2-HMGCR-GGPP pathway, leading to enhanced Treg suppresser functions but reduced CD8+ T cell proliferation, migration, homeostasis and anti-tumor immunity. Our study thus identifies a potential mechanism responsible for altered Treg function in the context of immune aging, and also implicates SOAT2 as a potential target for tumor immunotherapy.
Collapse
Affiliation(s)
- Mingjiong Zhang
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiahua Cui
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, China
| | - Haoyan Chen
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yifan Cheng
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiaoyu Chen
- Centre for Assisted Reproduction, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Feng Zong
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao Lu
- Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Changshu, China
| | - Lang Qin
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Han
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xingwang Kuai
- Department of Pathology, Medical School, Nantong University, Nantong, China
| | - Yuxing Zhang
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Minjie Chu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, China.
| | - Shuangshuang Wu
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Jianqing Wu
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Cassel SE, Huntington BM, Chen W, Lei P, Andreadis ST, Kloxin AM. Dynamic reporters for probing real-time activation of human fibroblasts from single cells to populations. APL Bioeng 2024; 8:026127. [PMID: 38938687 PMCID: PMC11209894 DOI: 10.1063/5.0166152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 06/06/2024] [Indexed: 06/29/2024] Open
Abstract
Activation of fibroblasts is pivotal for wound healing; however, persistent activation leads to maladaptive processes and is a hallmark of fibrosis, where disease mechanisms are only partially understood. Human in vitro model systems complement in vivo animal models for both hypothesis testing and drug evaluation to improve the identification of therapeutics relevant to human disease. Despite advances, a challenge remains in understanding the dynamics of human fibroblast responses to complex microenvironment stimuli, motivating the need for more advanced tools to investigate fibrotic mechanisms. This work established approaches for assessing the temporal dynamics of these responses using genetically encoded fluorescent reporters of alpha smooth muscle actin expression, an indicator of fibroblast activation. Specifically, we created a toolset of human lung fibroblast reporter cell lines from different origins (male, female; healthy, idiopathic pulmonary fibrosis) and used three different versions of the reporter with the fluorescent protein modified to exhibit different temporal stabilities, providing temporal resolution of protein expression processes over a range of timescales. Using this toolset, we demonstrated that reporters provide insight into population shifts in response to both mechanical and biochemical cues that are not detectable by traditional end point assessments with differential responses based on cell origin. Furthermore, individual cells can also be tracked over time, with opportunities for comparison to complementary end point measurements. The establishment of this reporter toolset enables dynamic cell investigations that can be translated into more complex synthetic culture environments for elucidating disease mechanisms and evaluating therapeutics for lung fibrosis and other complex biological processes more broadly.
Collapse
Affiliation(s)
- Samantha E. Cassel
- Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Breanna M. Huntington
- Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Wilfred Chen
- Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Pedro Lei
- Chemical and Biological Engineering, University at Buffalo, Buffalo, New York 14260-4200, USA
| | - Stelios T. Andreadis
- Chemical and Biological Engineering, University at Buffalo, Buffalo, New York 14260-4200, USA
| | | |
Collapse
|
3
|
Bomb K, LeValley PJ, Woodward I, Cassel SE, Sutherland BP, Bhattacharjee A, Yun Z, Steen J, Kurdzo E, McCoskey J, Burris D, Levine K, Carbrello C, Lenhoff AM, Fromen CA, Kloxin AM. Cell therapy biomanufacturing: integrating biomaterial and flow-based membrane technologies for production of engineered T-cells. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2201155. [PMID: 37600966 PMCID: PMC10437131 DOI: 10.1002/admt.202201155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 08/22/2023]
Abstract
Adoptive T-cell therapies (ATCTs) are increasingly important for the treatment of cancer, where patient immune cells are engineered to target and eradicate diseased cells. The biomanufacturing of ATCTs involves a series of time-intensive, lab-scale steps, including isolation, activation, genetic modification, and expansion of a patient's T-cells prior to achieving a final product. Innovative modular technologies are needed to produce cell therapies at improved scale and enhanced efficacy. In this work, well-defined, bioinspired soft materials were integrated within flow-based membrane devices for improving the activation and transduction of T cells. Hydrogel coated membranes (HCM) functionalized with cell-activating antibodies were produced as a tunable biomaterial for the activation of primary human T-cells. T-cell activation utilizing HCMs led to highly proliferative T-cells that expressed a memory phenotype. Further, transduction efficiency was improved by several fold over static conditions by using a tangential flow filtration (TFF) flow-cell, commonly used in the production of protein therapeutics, to transduce T-cells under flow. The combination of HCMs and TFF technology led to increased cell activation, proliferation, and transduction compared to current industrial biomanufacturing processes. The combined power of biomaterials with scalable flow-through transduction techniques provides future opportunities for improving the biomanufacturing of ATCTs.
Collapse
Affiliation(s)
- Kartik Bomb
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | - Paige J. LeValley
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | - Ian Woodward
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | - Samantha E. Cassel
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | | | | | - Zaining Yun
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | - Jonathan Steen
- EMD Millipore Corporation, Bedford, MA, an affiliate of Merck, Newark, DE
| | - Emily Kurdzo
- EMD Millipore Corporation, Bedford, MA, an affiliate of Merck, Newark, DE
| | - Jacob McCoskey
- EMD Millipore Corporation, Bedford, MA, an affiliate of Merck, Newark, DE
| | - David Burris
- Mechanical Engineering, University of Delaware, Newark, DE
| | - Kara Levine
- EMD Millipore Corporation, Bedford, MA, an affiliate of Merck, Newark, DE
| | | | - Abraham M. Lenhoff
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | | | - April M. Kloxin
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
- Material Science and Engineering, University of Delaware, Newark, DE
| |
Collapse
|
4
|
Yan L, Ou Y, Xia S, Huang J, Zhang W, Shao H, Shen H, Bo H, Tao C, Wang J, Wu F. Combined overexpression of four transcription factors promotes effector T cell dedifferentiation toward early phenotypes. Immunogenetics 2022; 74:231-244. [PMID: 35001141 DOI: 10.1007/s00251-021-01248-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/26/2021] [Indexed: 12/14/2022]
Abstract
Effector T cells, which are abundant but are short-lived after reinfusion into the body, are generally used for T-cell therapy, and antitumor immunity is typically not maintained over the long term. Genetic modification by early differentiated T cells and reinfusion has been shown to enhance antitumor immunity in vivo. This study overexpressed the characteristic transcription factors of differentiated early T cells by transfecting effector T cells with transcription factor recombinant lentivirus (S6 group: BCL6, EOMES, FOXP1, LEF1, TCF7, KLF7; S1 group: BCL6, EOMES, FOXP1, KLF7; S3 group: BCL6, EOMES, FOXP1, LEF1) to induce a sufficient number of effector T cells to dedifferentiate and optimize the transcription factor system. The results revealed that overexpression of early characteristic transcription factors in effector T cells upregulated the expression of early T cell differentiation markers (CCR7 and CD62L), with the S1 group having the highest expression level, while the rising trend of late differentiation marker (CD45RO) expression was suppressed. Moreover, the expression of early differentiation-related genes (ACTN1, CERS6, BCL2) was significantly increased, while the expression of late differentiation-related genes (KLRG-1) and effector function-related genes (GNLY, GZMB, PRF1) was significantly decreased; this difference in expression was more significant in the S1 group than in the other two experimental groups. The antiapoptotic ability of each experimental group was significantly enhanced, while the secretion ability of TNF-α and IFN-γ was weakened, with the effector cytokine secretion ability of the S1 group being the weakest. Transcriptomic analysis showed that the gene expression profile of each experimental group was significantly different from that of the control group, with differences in the gene expression pattern and number of differentially expressed genes in the S1 group compared with the other two experimental groups. The differentially expressed gene enrichment pathways were basically related to the cell cycle, cell division, and immune function. In conclusion, overexpression of early characteristic transcription factors in effector T cells induces their dedifferentiation, and induction of dedifferentiation by the S1 group may be more effective.
Collapse
Affiliation(s)
- Lijun Yan
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yusheng Ou
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shengfang Xia
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jianqing Huang
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenfeng Zhang
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongwei Shao
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Han Shen
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huaben Bo
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Changli Tao
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jinquan Wang
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fenglin Wu
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China. .,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
5
|
Gopal S, Osborne AE, Hock L, Zemianek J, Fang K, Gee G, Ghosh R, McNally D, Cramer SM, Dordick JS. Advancing a rapid, high throughput screening platform for optimization of lentivirus production. Biotechnol J 2021; 16:e2000621. [PMID: 34260824 DOI: 10.1002/biot.202000621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 07/05/2021] [Accepted: 07/12/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Lentiviral vectors (LVVs) hold great promise as delivery tools for gene therapy and chimeric antigen receptor T cell (CAR-T) therapy. Their ability to target difficult to transfect cells and deliver genetic payloads that integrate into the host genome makes them ideal delivery candidates. However, several challenges remain to be addressed before LVVs are more widely used as therapeutics including low viral vector concentrations and the absence of suitable scale-up methods for large-scale production. To address these challenges, we have developed a high throughput microscale HEK293 suspension culture platform that enables rapid screening of conditions for improving LVV productivity. KEY RESULTS High density culture (40 million cells mL-1 ) of HEK293 suspension cells in commercially available media was achieved in microscale 96-deep well plate platform at liquid volumes of 200 μL. Comparable transfection and LVV production efficiencies were observed at the microscale, in conventional shake flasks and a 1-L bioreactor, indicating that significant scale-down does not affect LVV concentrations and predictivity of scale-up. Optimization of production step allowed for final yields of LVVs to reach 1.5 × 107 TU mL-1 . CONCLUSIONS The ability to test a large number of conditions simultaneously with minimal reagent use allows for the rapid optimization of LVV production in HEK293 suspension cells. Therefore, such a system may serve as a valuable tool in early stage process development and can be used as a screening tool to improve LVV concentrations for both batch and perfusion based systems.
Collapse
Affiliation(s)
- Sneha Gopal
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Adam E Osborne
- MassBiologics, University of Massachusetts Medical School, Mattapan, Massachusetts, USA
| | - Lindsay Hock
- MassBiologics, University of Massachusetts Medical School, Mattapan, Massachusetts, USA
| | - Jill Zemianek
- MassBiologics, University of Massachusetts Medical School, Mattapan, Massachusetts, USA
| | - Kun Fang
- MassBiologics, University of Massachusetts Medical School, Mattapan, Massachusetts, USA
| | - Gretchen Gee
- MassBiologics, University of Massachusetts Medical School, Mattapan, Massachusetts, USA
| | - Ronit Ghosh
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - David McNally
- MassBiologics, University of Massachusetts Medical School, Mattapan, Massachusetts, USA
| | - Steven M Cramer
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA.,Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA.,Departments of Biomedical Engineering and Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| |
Collapse
|
6
|
Du L, Nai Y, Shen M, Li T, Huang J, Han X, Wang W, Pang D, Jin A. IL-21 Optimizes the CAR-T Cell Preparation Through Improving Lentivirus Mediated Transfection Efficiency of T Cells and Enhancing CAR-T Cell Cytotoxic Activities. Front Mol Biosci 2021; 8:675179. [PMID: 34179083 PMCID: PMC8220804 DOI: 10.3389/fmolb.2021.675179] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/17/2021] [Indexed: 01/09/2023] Open
Abstract
Adoptive immunotherapy using CAR-T cells is a promising curative treatment strategy for hematological malignancies. Current manufacture of clinical-grade CAR-T cells based on lentiviral/retrovirus transfection of T cells followed by anti-CD3/CD28 activation supplemented with IL-2 has been associated with low transfection efficiency and usually based on the use of terminally differentiated effector T cells. Thus, improving the quality and the quantity of CAR-T cells are essential for optimizing the CAR-T cell preparation. In our study, we focus on the role of IL-21 in the γc cytokine conditions for CAR-T cell preparation. We found for the first time that the addition of IL-21 in the CAR-T preparation improved T cell transfection efficiency through the reduction of IFN-γ expression 24-48 h after T cell activation. We also confirmed that IL-21 enhanced the enrichment and expansion of less differentiated CAR-T cells. Finally, we validated that IL-21 improved the CAR-T cell cytotoxicity, which was related to increased secretion of effector cytokines. Together, these findings can be used to optimize the CAR-T cell preparation.
Collapse
Affiliation(s)
- Li Du
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Yaru Nai
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Meiying Shen
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tingting Li
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Jingjing Huang
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Xiaojian Han
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Wang Wang
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Aishun Jin
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Zhang Y, Li H, Xiang X, Lu Y, Sharma M, Li Z, Liu K, Wei J, Shao D, Li B, Ma Z, Qiu Y. Identification of DNMT3B2 as the Predominant Isoform of DNMT3B in Porcine Alveolar Macrophages and Its Involvement in LPS-Stimulated TNF-α Expression. Genes (Basel) 2020; 11:E1065. [PMID: 32927661 PMCID: PMC7564714 DOI: 10.3390/genes11091065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022] Open
Abstract
DNA methyltransferase 3B (DNMT3B) as one member of the DNMT family functions as a de novo methyltransferase, characterized as more than 30 splice variants in humans and mice. However, the expression patterns of DNMT3B in pig as well as the biological function of porcine DNMT3B remain to be determined. In this study, we first examined the expression patterns of DNMT3B in porcine alveolar macrophages (PAM). We demonstrated that only DNMT3B2 and DNMT3B3 were the detectable isoforms in PAM. Furthermore, we revealed that DNTM3B2 was the predominant isoform in PAM. Next, in the model of LPS (lipopolysaccharide)-activated PAM, we showed that in comparison to the unstimulated PAM, (1) expression of DNTM3B is reduced; (2) the methylation level of TNF-α gene promoter is decreased. We further establish that DNMT3B2-mediated methylation of TNF-α gene promoter restricts induction of TNF-α in the LPS-stimulated PAM. In summary, these findings reveal that DNMT3B2 is the predominant isoform in PAM and its downregulation contributes to expression of TNF-α via hypomethylation of TNF-α gene promoter in the LPS-stimulated PAM.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (Y.Z.); (H.L.); (X.X.); (Y.L.); (M.S.); (Z.L.); (K.L.); (J.W.); (D.S.); (B.L.); (Z.M.)
| |
Collapse
|
8
|
Current status and hurdles for CAR-T cell immune therapy. BLOOD SCIENCE 2019; 1:148-155. [PMID: 35402809 PMCID: PMC8974909 DOI: 10.1097/bs9.0000000000000025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/25/2019] [Indexed: 12/30/2022] Open
Abstract
Chimeric antigen receptor T (CAR-T) cells have emerged as novel and promising immune therapies for the treatment of multiple types of cancer in patients with hematological malignancies. There are several key components critical for development and application of CAR-T therapy. First, the design of CAR vectors can considerably affect several aspects of the physiological functions of these T cells. Moreover, despite the wide use of γ-retrovirus and lentivirus in mediating gene transfer into T cells, optimal CAR delivery systems are also being developed and evaluated. In addition, several classes of mouse models have been used to evaluate the efficacies of CAR-T cells; however, each model has its own limitations. Clinically, although surprising complete remission (CR) rates were observed in acute lymphoblastic leukemia (ALL), lymphoma, and multiple myeloma (MM), there is still a lack of specific targets for acute myeloid leukemia (AML). Leukemia relapse remains a major challenge, and its mechanism is presently under investigation. Cytokine release syndrome (CRS) and neurotoxicity are life-threatening adverse effects that need to be carefully treated. Several factors that compromise the activities of anti-solid cancer CAR-T cells have been recognized, and further improvements targeting these factors are the focus of the development of novel CAR-T cells. Overcoming the current hurdles will lead to optimal responses of CAR-T cells, thus paving the way for their wide clinical application.
Collapse
|
9
|
Liu Q, Du J, Fan J, Li W, Guo W, Feng H, Lin J. Generation and Characterization of Induced Pluripotent Stem Cells from Mononuclear Cells in Schizophrenic Patients. CELL JOURNAL 2019; 21:161-168. [PMID: 30825289 PMCID: PMC6397609 DOI: 10.22074/cellj.2019.5871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/01/2018] [Indexed: 12/17/2022]
Abstract
Objective Schizophrenia (SZ) is a mental disorder in which psychotic symptoms are the main problem. The
pathogenesis of SZ is not fully understood, partly because of limitations in current disease models and technology. The
development of induced pluripotent stem cell (iPSC) technology has opened up the possibility of elucidating disease
mechanisms in neurodegenerative diseases. Here, we aimed to obtain iPSCs from peripheral blood mononuclear cells
(PBMCs) of normal and schizophrenic individuals and analyze the inflammatory response in these iPSCs.
Materials and Methods In this experimental study, we isolated PBMCs from whole blood of healthy individuals and
SZ patients and reprogrammed them into iPSCs by transfection of recombinant lentiviruses that contained Yamanaka
factors (Oct4, Sox2, Klf4 and c-Myc). We calculated the numbers of iPSC clones and stained them with alkaline
phosphatase (ALP), Nanog, SSEA4, Nestin, Vimentin, and AFP to confirm their efficiency and pluripotency. The iPSCs
were analyzed by real-time quantitative polymerase chain reaction (qRT-PCR) for the expressions of inflammatory
factors.
Results iPSCs from schizophrenic patients (SZ-iPSCs) exhibited typical morphology and highly expressed pluripotent
markers. These iPSCs retained their normal karyotype and differentiated in vitro to form embryoid bodies (EBs) that
expressed markers of all 3 germ layers. However, iPSCs from the SZ-iPSCs group had a weak capacity to differentiate
into ectoderm compared to the normal iPSCs (Con-iPSC). An elevated, stronger inflammatory response existed in
iPSCs from schizophrenic individuals.
Conclusion We successfully obtained iPSCs from PBMCs of schizophrenic patients without genetic operation and analyzed
the expressions of pluripotent markers and inflammatory factors between the Con-iPSC and SZ-iPSC groups. Taken together,
our results may assist to explain the pathogenesis of SZ and develop new strategies for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Qing Liu
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang, China.,College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jiang Du
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang, China.,College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Jinyu Fan
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang, China.,College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Wenqiang Li
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Weiyun Guo
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Huigen Feng
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang, China.,College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.Electronic Address:
| | - Juntang Lin
- Stem Cell and Biotherapy Engineering Research Center of Henan, Xinxiang Medical University, Xinxiang, China.,College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China.Electronic Address:
| |
Collapse
|