1
|
Vitiello E, Castagnetti F, Mecarelli LS, D'Ambra E, Tollis P, Ruocco G, Laneve P, Caffarelli E, Mariani D, Bozzoni I. Live-cell imaging of circular and long noncoding RNAs associated with FUS pathological aggregates by Pepper fluorescent RNA. RNA (NEW YORK, N.Y.) 2025; 31:529-548. [PMID: 39779212 PMCID: PMC11912908 DOI: 10.1261/rna.080119.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025]
Abstract
Lately, important advancements in visualizing RNAs in fixed and live cells have been achieved. Although mRNA imaging techniques are well-established, the development of effective methods for studying noncoding RNAs (ncRNAs) in living cells is still challenging but necessary, as they show a variety of functions and intracellular localizations, including participation in highly dynamic processes like phase transition, which is still poorly studied in vivo. Addressing this issue, we tagged two exemplary ncRNAs with the fluorescent RNA (fRNA) Pepper. Specifically, we showed that circ-HDGFRP3 interacts with p-bodies and is recruited in pathological FUS aggregates in a dynamic fashion, and we super-resolved its distribution in such condensates via structured illumination microscopy. Moreover, we tracked the long noncoding RNA (lncRNA) nHOTAIRM1, a motor neuron-specific constituent of stress granules, monitoring its behavior throughout the oxidative-stress response in physiological and pathological conditions. Overall, as fRNA development progresses, our work demonstrates an effective use of Pepper for monitoring complex processes, such as phase transition, in living cells through the visualization of circular RNAs (circRNAs) and lncRNAs with super-resolution power.
Collapse
Affiliation(s)
- Erika Vitiello
- Center for Human Technologies, Italian Institute of Technology, Genoa, Italy
| | | | - Lorenzo Stufera Mecarelli
- Center for Human Technologies, Italian Institute of Technology, Genoa, Italy
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Eleonora D'Ambra
- Center for Life Nano- and Neuro-Science, Fondazione Italian Institute of Technology, Rome, Italy
| | - Paolo Tollis
- Center for Life Nano- and Neuro-Science, Fondazione Italian Institute of Technology, Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano- and Neuro-Science, Fondazione Italian Institute of Technology, Rome, Italy
| | - Pietro Laneve
- Institute of Molecular Biology and Pathology, CNR, Rome, Italy
| | | | - Davide Mariani
- Center for Human Technologies, Italian Institute of Technology, Genoa, Italy
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Irene Bozzoni
- Center for Human Technologies, Italian Institute of Technology, Genoa, Italy
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, Rome, Italy
- Center for Life Nano- and Neuro-Science, Fondazione Italian Institute of Technology, Rome, Italy
| |
Collapse
|
2
|
Cruz-Ruiz S, Vidal R, Furlan-Magaril M, Lis JT, Zurita M. Transcriptional stress induces the overexpression of novel lncRNAs that regulate the BRCA1 locus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.11.642677. [PMID: 40161662 PMCID: PMC11952445 DOI: 10.1101/2025.03.11.642677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Long non-coding RNAs (lncRNAs) have been shown to play a role during transcriptional regulation in response to stress. However, their function under stress caused by transcriptional inhibition has not yet been addressed. Using genome-wide assays to elucidate the transcriptional response in human cells caused by RNA polymerase II transcription inhibition, we found three novel regulatory lncRNAs, TILR-1 , TILR-2 , and LINC00910 , that are upregulated as a response to this transcriptional stress. Knockdown experiments showed that the expression of these RNAs is interdependent, and together, they regulate transcription of the nearby BRCA1 locus. The lack of these novel regulatory transcripts also resulted in an increase in cellular proliferation and survival. Public transcriptomic data from different cell lines treated with a variety of transcriptional inhibitors or with heat shock and arsenic stress showed that TILR-1 , TILR-2 , and LINC00910 are commonly upregulated in a broad array of stress conditions. Evolutionary analysis showed that TILR-1 , TILR-2 , and LINC00910 are highly conserved among primates, and their emergence correlates with the duplication of the bidirectional promoter of BRCA1 and NBR1 . We conclude that that coordinate transcription of TILR-1 , TILR-2 , and LINC00910 is stimulated generally by stress and the resulting lncRNAs are novel, functionally-conserved regulators of the BRCA1 locus.
Collapse
|
3
|
Lysakovskaia K, Devadas A, Schwalb B, Lidschreiber M, Cramer P. Promoter-proximal RNA polymerase II termination regulates transcription during human cell type transition. Nat Struct Mol Biol 2025:10.1038/s41594-025-01486-9. [PMID: 39934431 DOI: 10.1038/s41594-025-01486-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/07/2025] [Indexed: 02/13/2025]
Abstract
Metazoan gene transcription by RNA polymerase II (Pol II) is regulated in the promoter-proximal region. Pol II can undergo termination in the promoter-proximal region but whether this can contribute to transcription regulation in cells remains unclear. Here we extend our previous multiomics analysis to quantify changes in transcription kinetics during a human cell type transition event. We observe that upregulation of transcription involves an increase in initiation frequency and, at a set of genes, a decrease in promoter-proximal termination. In turn, downregulation of transcription involves a decrease in initiation frequency and an increase in promoter-proximal termination. Thus, promoter-proximal termination of Pol II contributes to the regulation of human gene transcription.
Collapse
Affiliation(s)
- Kseniia Lysakovskaia
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Arjun Devadas
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Björn Schwalb
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Michael Lidschreiber
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
4
|
Chen R, Tong Y, Hu X, Wang W, Liao F. circSLTM knockdown attenuates chondrocyte inflammation, apoptosis and ECM degradation in osteoarthritis by regulating the miR-515-5p/VAPB axis. Int Immunopharmacol 2024; 138:112435. [PMID: 38981227 DOI: 10.1016/j.intimp.2024.112435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 07/11/2024]
Abstract
Osteoarthritis (OA) is a prevalent joint disorder characterized by cartilage degeneration. Circular RNAs (circRNAs) have emerged as pivotal players in OA progression, orchestrating various biological processes such as proliferation, apoptosis, inflammation, and extracellular matrix (ECM) reorganization. Among these circRNAs, circSLTM exhibits aberrant expression in OA, yet its precise regulatory mechanism remains elusive. This study aimed to elucidate the regulatory mechanisms of circSLTM in OA pathogenesis, with a focus on its role as a competing endogenous RNA (ceRNA). Human cartilage tissues were procured from both OA patients and non-OA individuals, while human chondrocyte cells were subjected to lipopolysaccharide (LPS) treatment to mimic OA-like conditions. Our findings revealed upregulation of circSLTM in OA patients and LPS-treated chondrocytes. Loss-of-function assays were conducted, demonstrating that silencing circSLTM via shRNAs mitigated LPS-induced effects on chondrocytes, as evidenced by enhanced proliferation, reduced apoptosis, and inflammatory factors, and altered expression of extracellular matrix proteins. Further exploration into the regulatory mechanism of circSLTM unveiled its interaction with microRNA-515-5p (miR-515-5p) to modulate vesicle-associated membrane protein (VAPB) expression in chondrocytes. VAPB, also upregulated in OA, was positively regulated by circSLTM. Rescue assays corroborated that VAPB overexpression reinstated the protective effects of circSLTM knockdown on LPS-treated chondrocytes. Moreover, concurrent knockdown of both circSLTM and VAPB demonstrated synergistic protection against LPS-induced chondrocyte injury. Additionally, we delineated that LPS triggered the activation of the NF-κB pathway in chondrocytes, which was counteracted by circSLTM silencing. To assess the effects of circSLTM on OA in vivo, anterior cruciate ligament transection (ACLT) mouse models were established, revealing that circSLTM deficiency ameliorated cartilage defects in vivo. In conclusion, circSLTM exacerbates osteoarthritis progression by orchestrating the miR-515-5p/VAPB axis and activating the NF-κB pathway, providing novel insights for targeted therapy in OA management.
Collapse
Affiliation(s)
- Rijiang Chen
- Department of Orthopedics, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian 364000, China.
| | - Yan Tong
- Department of Endocrine, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian 364000, China.
| | - Xiunian Hu
- Department of Orthopedics, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian 364000, China.
| | - Wantao Wang
- Department of Orthopedics, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian 364000, China.
| | - Fake Liao
- Department of Orthopedics, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian 364000, China.
| |
Collapse
|
5
|
Li Z, Ma Y, Fan C, Jiang H. The circAno6/miR-296-3p/TLR4 signaling axis mediates the inflammatory response to induce the activation of hepatic stellate cells. Gene 2024; 920:148497. [PMID: 38677350 DOI: 10.1016/j.gene.2024.148497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/29/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Circular RNA (circRNA) is a novel functional non-coding RNA(ncRNA) that plays a role in the occurrence and development of multiple human liver diseases, including liver fibrosis (LF). LF is a reversible repair response after liver injury, and the activation of hepatic stellate cells (HSCs) is the core event. However, the regulatory mechanisms by which circRNAs induce the activation of HSCs in LF are still poorly understood. The circAno6/miR-296-3p/toll-like receptor 4 (TLR4) signaling axis that mediates the inflammatory response and causes the activation of HSCs was investigated in this study. METHODS First, a circAno6 overexpression plasmid and small interfering RNA were transfected into cells to determine whether circAno6 can affect the function of HSCs. Second, real-time quantitative polymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), western blotting (WB) and immunofluorescence (IF) were used to detect the effects of circAno6 plasmid/siRNA transfection on HSC activation indices, inflammatory markers and the circAno6/miR-296-3p/TLR4 signaling axis. The subcellular position of circAno6 was then examined by nucleo-cytoplasmic separation and fluorescence in situ hybridization (FISH). Finally, a luciferase reporter gene assay was used to identify the relationship between circAno6 and miR-296-3p as well as the relationship between miR-296-3p and TLR4. RESULTS CircAno6 was considerably upregulated in HSCs and positively correlated with cell proliferation and alpha-smooth muscle actin (α-SMA), collagen I, NOD-likereceptorthermalproteindomainassociatedprotein 3 (NLRP3), interleukin-1β (IL-1β) and interleukin-18 (IL-18) expression. Overexpression of circAno6 increased the inflammatory response and induced HSC activation, whereas interference resulted in the opposite effects. FISH experiments revealed the localization of circAno6 in the cytoplasm. Then, a double luciferase reporter assay confirmed that miR-296-3p significantly inhibited luciferase activity in the circAno6-WT and TLR4-WT groups. CONCLUSION This study suggests that circAno6 and miR-296-3p/TLR4 may form a regulatory axis and regulate the inflammatory response, which in turn induces HSC activation. Targeting circAno6 may be a potential therapeutic strategy to treat LF.
Collapse
Affiliation(s)
- Zhen Li
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province 230031, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province 230012, China
| | - Yanzhen Ma
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province 230031, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province 230012, China
| | - Chang Fan
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province 230031, China
| | - Hui Jiang
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province 230031, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province 230012, China.
| |
Collapse
|
6
|
Wakabayashi Y, Shimono A, Terauchi Y, Zeng C, Hamada M, Semba K, Watanabe S, Ishikawa K. Identification of a novel RNA transcript TISPL upregulated by stressors that stimulate ATF4. Gene 2024; 917:148464. [PMID: 38615981 DOI: 10.1016/j.gene.2024.148464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Cells sense, respond, and adapt to environmental conditions that cause stress. In a previous study using HeLa cells, we isolated reporter cells responding to the endoplasmic reticulum (ER) stress inducers, thapsigargin and tunicamycin, using a highly sensitive promoter trap vector system. Splinkerette PCR and 5' rapid amplification of cDNA ends (5' RACE) identified a novel transcript that is upregulated by ER stress. Its endogenous expression increased approximately 10-fold in response to thapsigargin and tunicamycin within 1 h, but was down-regulated after 4 h. Because the transcript starts from an intron of a long noncoding RNA known as LINC-PINT, we designated the newly identified transcript TISPL (transcript induced by stressors from LINC-PINTlocus). TISPL was also expressed under several other stress conditions. It was particularly increased > 10-fold upon glucose starvation and 7-fold by arsenite exposure. Furthermore, in silico analyses, including a ChIP-atlas search, revealed that there is an ATF4-binding region with a c/ebp-Atf response element (CARE) downstream of the transcription start site of TISPL. Based on these results, we hypothesized that TISPL may be induced by the phospho-eIF2α and ATF4- axis of the integrated stress response pathway, which is known to be activated by the stress conditions listed above. As expected, knockout of ATF4 abolished the stress-induced upregulation of TISPL. Our results indicate that TISPL may be a useful biomarker for detecting stress conditions that activate ATF4. Our highly sensitive trap vector system proved beneficial in discovering new biomarkers.
Collapse
Affiliation(s)
- Yutaro Wakabayashi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Aika Shimono
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yuki Terauchi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Chao Zeng
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Michiaki Hamada
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Kentaro Semba
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Translational Research Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Shinya Watanabe
- Translational Research Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Kosuke Ishikawa
- Japan Biological Informatics Consortium (JBiC), 2-4-32 Aomi, Koto-ku, Tokyo 135-8073, Japan.
| |
Collapse
|
7
|
Velychko T, Mohammad E, Ferrer-Vicens I, Parfentev I, Werner M, Studniarek C, Schwalb B, Urlaub H, Murphy S, Cramer P, Lidschreiber M. CDK7 kinase activity promotes RNA polymerase II promoter escape by facilitating initiation factor release. Mol Cell 2024; 84:2287-2303.e10. [PMID: 38821049 DOI: 10.1016/j.molcel.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/01/2024] [Accepted: 05/08/2024] [Indexed: 06/02/2024]
Abstract
Cyclin-dependent kinase 7 (CDK7), part of the general transcription factor TFIIH, promotes gene transcription by phosphorylating the C-terminal domain of RNA polymerase II (RNA Pol II). Here, we combine rapid CDK7 kinase inhibition with multi-omics analysis to unravel the direct functions of CDK7 in human cells. CDK7 inhibition causes RNA Pol II retention at promoters, leading to decreased RNA Pol II initiation and immediate global downregulation of transcript synthesis. Elongation, termination, and recruitment of co-transcriptional factors are not directly affected. Although RNA Pol II, initiation factors, and Mediator accumulate at promoters, RNA Pol II complexes can also proceed into gene bodies without promoter-proximal pausing while retaining initiation factors and Mediator. Further downstream, RNA Pol II phosphorylation increases and initiation factors and Mediator are released, allowing recruitment of elongation factors and an increase in RNA Pol II elongation velocity. Collectively, CDK7 kinase activity promotes the release of initiation factors and Mediator from RNA Pol II, facilitating RNA Pol II escape from the promoter.
Collapse
Affiliation(s)
- Taras Velychko
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Eusra Mohammad
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Ivan Ferrer-Vicens
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Iwan Parfentev
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Marcel Werner
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Cecilia Studniarek
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Björn Schwalb
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany; Institute of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.
| | - Michael Lidschreiber
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
8
|
Basurto-Cayuela L, Guerrero-Martínez JA, Gómez-Marín E, Sánchez-Escabias E, Escaño-Maestre M, Ceballos-Chávez M, Reyes JC. SWI/SNF-dependent genes are defined by their chromatin landscape. Cell Rep 2024; 43:113855. [PMID: 38427563 DOI: 10.1016/j.celrep.2024.113855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 11/23/2023] [Accepted: 02/08/2024] [Indexed: 03/03/2024] Open
Abstract
SWI/SNF complexes are evolutionarily conserved, ATP-dependent chromatin remodeling machines. Here, we characterize the features of SWI/SNF-dependent genes using BRM014, an inhibitor of the ATPase activity of the complexes. We find that SWI/SNF activity is required to maintain chromatin accessibility and nucleosome occupancy for most enhancers but not for most promoters. SWI/SNF activity is needed for expression of genes with low to medium levels of expression that have promoters with (1) low chromatin accessibility, (2) low levels of active histone marks, (3) high H3K4me1/H3K4me3 ratio, (4) low nucleosomal phasing, and (5) enrichment in TATA-box motifs. These promoters are mostly occupied by the canonical Brahma-related gene 1/Brahma-associated factor (BAF) complex. These genes are surrounded by SWI/SNF-dependent enhancers and mainly encode signal transduction, developmental, and cell identity genes (with almost no housekeeping genes). Machine-learning models trained with different chromatin characteristics of promoters and their surrounding regulatory regions indicate that the chromatin landscape is a determinant for establishing SWI/SNF dependency.
Collapse
Affiliation(s)
- Laura Basurto-Cayuela
- Genome Biology Department, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| | - José A Guerrero-Martínez
- Genome Biology Department, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| | - Elena Gómez-Marín
- Genome Biology Department, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| | - Elena Sánchez-Escabias
- Genome Biology Department, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| | - María Escaño-Maestre
- Genome Biology Department, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| | - María Ceballos-Chávez
- Genome Biology Department, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| | - José C Reyes
- Genome Biology Department, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain.
| |
Collapse
|
9
|
Olazabal-Herrero A, He B, Kwon Y, Gupta AK, Dutta A, Huang Y, Boddu P, Liang Z, Liang F, Teng Y, Lan L, Chen X, Pei H, Pillai MM, Sung P, Kupfer GM. The FANCI/FANCD2 complex links DNA damage response to R-loop regulation through SRSF1-mediated mRNA export. Cell Rep 2024; 43:113610. [PMID: 38165804 PMCID: PMC10865995 DOI: 10.1016/j.celrep.2023.113610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/21/2023] [Accepted: 12/05/2023] [Indexed: 01/04/2024] Open
Abstract
Fanconi anemia (FA) is characterized by congenital abnormalities, bone marrow failure, and cancer susceptibility. The central FA protein complex FANCI/FANCD2 (ID2) is activated by monoubiquitination and recruits DNA repair proteins for interstrand crosslink (ICL) repair and replication fork protection. Defects in the FA pathway lead to R-loop accumulation, which contributes to genomic instability. Here, we report that the splicing factor SRSF1 and FANCD2 interact physically and act together to suppress R-loop formation via mRNA export regulation. We show that SRSF1 stimulates FANCD2 monoubiquitination in an RNA-dependent fashion. In turn, FANCD2 monoubiquitination proves crucial for the assembly of the SRSF1-NXF1 nuclear export complex and mRNA export. Importantly, several SRSF1 cancer-associated mutants fail to interact with FANCD2, leading to inefficient FANCD2 monoubiquitination, decreased mRNA export, and R-loop accumulation. We propose a model wherein SRSF1 and FANCD2 interaction links DNA damage response to the avoidance of pathogenic R-loops via regulation of mRNA export.
Collapse
Affiliation(s)
- Anne Olazabal-Herrero
- Department of Oncology and Pediatrics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA; Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT 06511, USA
| | - Boxue He
- Department of Biochemistry and Structural Biology, Greehey Children's Cancer Research Institute, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology, Greehey Children's Cancer Research Institute, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Abhishek K Gupta
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT 06511, USA
| | - Arijit Dutta
- Department of Biochemistry and Structural Biology, Greehey Children's Cancer Research Institute, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yuxin Huang
- Department of Biochemistry and Structural Biology, Greehey Children's Cancer Research Institute, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Prajwal Boddu
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT 06511, USA
| | - Zhuobin Liang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Fengshan Liang
- Department of Oncology and Pediatrics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA; Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT 06511, USA
| | - Yaqun Teng
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02129, USA; Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Li Lan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02129, USA; Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Xiaoyong Chen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Huadong Pei
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Manoj M Pillai
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT 06511, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, Greehey Children's Cancer Research Institute, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Gary M Kupfer
- Department of Oncology and Pediatrics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.
| |
Collapse
|
10
|
Werner M, Hamperl S. A quick restart: RNA polymerase jumping onto post-replicative chromatin. Mol Cell 2024; 84:186-188. [PMID: 38242096 DOI: 10.1016/j.molcel.2023.12.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/21/2024]
Abstract
Two recent studies in Molecular Cell1 and Nature2 show that evicted RNA polymerases reassociate rapidly with post-replicative chromatin and proceed into an unusual transcription cycle, bypassing regular controls and creating a temporary window for altered gene expression.
Collapse
Affiliation(s)
- Marcel Werner
- Institute of Epigenetics and Stem Cells, Helmholtz Munich, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Stephan Hamperl
- Institute of Epigenetics and Stem Cells, Helmholtz Munich, Feodor-Lynen-Strasse 21, 81377 München, Germany.
| |
Collapse
|
11
|
Bruno F, Coronel-Guisado C, González-Aguilera C. Collisions of RNA polymerases behind the replication fork promote alternative RNA splicing in newly replicated chromatin. Mol Cell 2024; 84:221-233.e6. [PMID: 38151016 DOI: 10.1016/j.molcel.2023.11.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/23/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023]
Abstract
DNA replication produces a global disorganization of chromatin structure that takes hours to be restored. However, how these chromatin rearrangements affect the regulation of gene expression and the maintenance of cell identity is not clear. Here, we use ChOR-seq and ChrRNA-seq experiments to analyze RNA polymerase II (RNAPII) activity and nascent RNA synthesis during the first hours after chromatin replication in human cells. We observe that transcription elongation is rapidly reactivated in nascent chromatin but that RNAPII abundance and distribution are altered, producing heterogeneous changes in RNA synthesis. Moreover, this first wave of transcription results in RNAPII blockages behind the replication fork, leading to changes in alternative splicing. Altogether, our results deepen our understanding of how transcriptional programs are regulated during cell division and uncover molecular mechanisms that explain why chromatin replication is an important source of gene expression variability.
Collapse
Affiliation(s)
- Federica Bruno
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, CSIC, Universidad Pablo de Olavide, 41092, Seville, Spain
| | - Cristóbal Coronel-Guisado
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, CSIC, Universidad Pablo de Olavide, 41092, Seville, Spain
| | - Cristina González-Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, CSIC, Universidad Pablo de Olavide, 41092, Seville, Spain; Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41013, Seville, Spain.
| |
Collapse
|
12
|
Rogala S, Ali T, Melissari MT, Währisch S, Schuster P, Sarre A, Emídio RC, Boettger T, Rogg EM, Kaur J, Krishnan J, Dumbović G, Dimmeler S, Ounzain S, Pedrazzini T, Herrmann BG, Grote P. The lncRNA Sweetheart regulates compensatory cardiac hypertrophy after myocardial injury in murine males. Nat Commun 2023; 14:7024. [PMID: 37919291 PMCID: PMC10622434 DOI: 10.1038/s41467-023-42760-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023] Open
Abstract
After myocardial infarction in the adult heart the remaining, non-infarcted tissue adapts to compensate the loss of functional tissue. This adaptation requires changes in gene expression networks, which are mostly controlled by transcription regulating proteins. Long non-coding transcripts (lncRNAs) are taking part in fine-tuning such gene programs. We describe and characterize the cardiomyocyte specific lncRNA Sweetheart RNA (Swhtr), an approximately 10 kb long transcript divergently expressed from the cardiac core transcription factor coding gene Nkx2-5. We show that Swhtr is dispensable for normal heart development and function but becomes essential for the tissue adaptation process after myocardial infarction in murine males. Re-expressing Swhtr from an exogenous locus rescues the Swhtr null phenotype. Genes that depend on Swhtr after cardiac stress are significantly occupied and therefore most likely regulated by NKX2-5. The Swhtr transcript interacts with NKX2-5 and disperses upon hypoxic stress in cardiomyocytes, indicating an auxiliary role of Swhtr for NKX2-5 function in tissue adaptation after myocardial injury.
Collapse
Affiliation(s)
- Sandra Rogala
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Str. 42-44, 60596, Frankfurt am Main, Germany
| | - Tamer Ali
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Str. 42-44, 60596, Frankfurt am Main, Germany
- Faculty of Science, Benha University, Benha, 13518, Egypt
| | - Maria-Theodora Melissari
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Sandra Währisch
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195, Berlin, Germany
| | - Peggy Schuster
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Alexandre Sarre
- Cardiovascular Assessment Facility, University of Lausanne Medical School, Lausanne, Switzerland
| | - Rebeca Cordellini Emídio
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Thomas Boettger
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart- and Lung Research, 61231, Bad Nauheim, Germany
| | - Eva-Maria Rogg
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Jaskiran Kaur
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Jaya Krishnan
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Gabrijela Dumbović
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Samir Ounzain
- Experimental Cardiology Unit, Department of Cardiovascular Medicine, University of Lausanne Medical School, Lausanne, Switzerland
- HAYA Therapeutics, Rte de la Corniche 6, 1066, Lausanne, Switzerland
| | - Thierry Pedrazzini
- Experimental Cardiology Unit, Department of Cardiovascular Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Bernhard G Herrmann
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195, Berlin, Germany
| | - Phillip Grote
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Str. 42-44, 60596, Frankfurt am Main, Germany.
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
13
|
Bharadhwaj RA, Kumarswamy R. Long noncoding RNA TUG1 regulates smooth muscle cell differentiation via KLF4-myocardin axis. Am J Physiol Cell Physiol 2023; 325:C940-C950. [PMID: 37642238 PMCID: PMC10635660 DOI: 10.1152/ajpcell.00275.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Abdominal aortic aneurysms (AAAs) are asymptomatic vascular diseases that have life-threatening outcomes. Smooth muscle cell (SMC) dysfunction plays an important role in AAA development. The contribution of non-coding genome, specifically the role of long non-coding RNAs (lncRNAs) in SMC dysfunction, is relatively unexplored. We investigated the role of lncRNA TUG1 in SMC dysfunction. To identify potential lncRNAs relevant to SMC functionality, lncRNA profiling was performed in angiotensin-II-treated SMCs. AAA was induced by angiotensin-II treatment in mice. Transcriptional regulation of TUG1 was studied using promoter luciferase and chromatin-immuno-precipitation experiments. Gain-or-loss-of-function experiments were performed in vitro to investigate TUG1-mediated regulation of SMC function. Immunoprecipitation experiments were conducted to elucidate the mechanism underlying TUG1-mediated SMC dysfunction. TUG1 was upregulated in SMCs following angiotensin-II treatment. Similarly, TUG1 levels were elevated in abdominal aorta in a mouse model of angiotensin-II-induced AAA. Further investigations showed that angiotensin-II-induced TUG1 expression could be suppressed by inhibiting Notch-signaling pathway, both in vitro and in mouse AAA model and that TUG1 is a direct transcriptional target of the Notch pathway. In aneurysmal tissues, TUG1 expression was inversely correlated with the expression of SMC contractile genes. Overexpression of TUG1 repressed SMC differentiation in vitro, whereas siRNA/shRNA-mediated TUG1 knockdown showed an opposite effect. Mechanistically, TUG1 interacts with transcriptional repressor KLF4 and facilitates its recruitment to myocardin promoter ultimately leading to the repression of SMC differentiation. In summary, our study uncovers a novel role for the lncRNA TUG1 wherein it modulates SMC differentiation via the KLF4-myocardin axis, which may have potential implications in AAA development.NEW & NOTEWORTHY TUG1 is an angiotensin-II-induced long noncoding RNA that mediates smooth muscle cell (SMC) dysfunction through interaction with transcriptional repressor KLF4.
Collapse
Affiliation(s)
- Ravi Abishek Bharadhwaj
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Regalla Kumarswamy
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
14
|
Camera F, Romero-Camarero I, Revell BH, Amaral FM, Sinclair OJ, Simeoni F, Wiseman DH, Stojic L, Somervaille TC. Differentiation block in acute myeloid leukemia regulated by intronic sequences of FTO. iScience 2023; 26:107319. [PMID: 37539037 PMCID: PMC10393733 DOI: 10.1016/j.isci.2023.107319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/23/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023] Open
Abstract
Iroquois transcription factor gene IRX3 is highly expressed in 20-30% of acute myeloid leukemia (AML) and contributes to the pathognomonic differentiation block. Intron 8 FTO sequences ∼220kB downstream of IRX3 exhibit histone acetylation, DNA methylation, and contacts with the IRX3 promoter, which correlate with IRX3 expression. Deletion of these intronic elements confirms a role in positively regulating IRX3. RNAseq revealed long non-coding (lnc) transcripts arising from this locus. FTO-lncAML knockdown (KD) induced differentiation of AML cells, loss of clonogenic activity, and reduced FTO intron 8:IRX3 promoter contacts. While both FTO-lncAML KD and IRX3 KD induced differentiation, FTO-lncAML but not IRX3 KD led to HOXA downregulation suggesting transcript activity in trans. FTO-lncAMLhigh AML samples expressed higher levels of HOXA and lower levels of differentiation genes. Thus, a regulatory module in FTO intron 8 consisting of clustered enhancer elements and a long non-coding RNA is active in human AML, impeding myeloid differentiation.
Collapse
Affiliation(s)
- Francesco Camera
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, The Oglesby Cancer Research Centre Building, 555 Wilmslow Road, M20 4GJ Manchester, UK
| | - Isabel Romero-Camarero
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, The Oglesby Cancer Research Centre Building, 555 Wilmslow Road, M20 4GJ Manchester, UK
| | - Bradley H. Revell
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, The Oglesby Cancer Research Centre Building, 555 Wilmslow Road, M20 4GJ Manchester, UK
| | - Fabio M.R. Amaral
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, The Oglesby Cancer Research Centre Building, 555 Wilmslow Road, M20 4GJ Manchester, UK
| | - Oliver J. Sinclair
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, The Oglesby Cancer Research Centre Building, 555 Wilmslow Road, M20 4GJ Manchester, UK
| | - Fabrizio Simeoni
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, The Oglesby Cancer Research Centre Building, 555 Wilmslow Road, M20 4GJ Manchester, UK
| | - Daniel H. Wiseman
- Epigenetics of Haematopoiesis Group, Oglesby Cancer Research Building, The University of Manchester, M20 4GJ Manchester, UK
| | - Lovorka Stojic
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, EC1M 6BQ London, UK
| | - Tim C.P. Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, The Oglesby Cancer Research Centre Building, 555 Wilmslow Road, M20 4GJ Manchester, UK
| |
Collapse
|
15
|
Mangoni D, Simi A, Lau P, Armaos A, Ansaloni F, Codino A, Damiani D, Floreani L, Di Carlo V, Vozzi D, Persichetti F, Santoro C, Pandolfini L, Tartaglia GG, Sanges R, Gustincich S. LINE-1 regulates cortical development by acting as long non-coding RNAs. Nat Commun 2023; 14:4974. [PMID: 37591988 PMCID: PMC10435495 DOI: 10.1038/s41467-023-40743-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 08/07/2023] [Indexed: 08/19/2023] Open
Abstract
Long Interspersed Nuclear Elements-1s (L1s) are transposable elements that constitute most of the genome's transcriptional output yet have still largely unknown functions. Here we show that L1s are required for proper mouse brain corticogenesis operating as regulatory long non-coding RNAs. They contribute to the regulation of the balance between neuronal progenitors and differentiation, the migration of post-mitotic neurons and the proportions of different cell types. In cortical cultured neurons, L1 RNAs are mainly associated to chromatin and interact with the Polycomb Repressive Complex 2 (PRC2) protein subunits enhancer of Zeste homolog 2 (Ezh2) and suppressor of zeste 12 (Suz12). L1 RNA silencing influences PRC2's ability to bind a portion of its targets and the deposition of tri-methylated histone H3 (H3K27me3) marks. Our results position L1 RNAs as crucial signalling hubs for genome-wide chromatin remodelling, enabling the fine-tuning of gene expression during brain development and evolution.
Collapse
Affiliation(s)
- Damiano Mangoni
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Alessandro Simi
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Pierre Lau
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Alexandros Armaos
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Federico Ansaloni
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Azzurra Codino
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Devid Damiani
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Lavinia Floreani
- Area of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Valerio Di Carlo
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Diego Vozzi
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Francesca Persichetti
- Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Claudio Santoro
- Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Luca Pandolfini
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | | | - Remo Sanges
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy.
- Area of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy.
| | - Stefano Gustincich
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy.
| |
Collapse
|
16
|
Ramasamy S, Aljahani A, Karpinska MA, Cao TBN, Velychko T, Cruz JN, Lidschreiber M, Oudelaar AM. The Mediator complex regulates enhancer-promoter interactions. Nat Struct Mol Biol 2023:10.1038/s41594-023-01027-2. [PMID: 37430065 DOI: 10.1038/s41594-023-01027-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 05/30/2023] [Indexed: 07/12/2023]
Abstract
Enhancer-mediated gene activation generally requires physical proximity between enhancers and their target gene promoters. However, the molecular mechanisms by which interactions between enhancers and promoters are formed are not well understood. Here, we investigate the function of the Mediator complex in the regulation of enhancer-promoter interactions, by combining rapid protein depletion and high-resolution MNase-based chromosome conformation capture approaches. We show that depletion of Mediator leads to reduced enhancer-promoter interaction frequencies, which are associated with a strong decrease in gene expression. In addition, we find increased interactions between CTCF-binding sites upon Mediator depletion. These changes in chromatin architecture are associated with a redistribution of the Cohesin complex on chromatin and a reduction in Cohesin occupancy at enhancers. Together, our results indicate that the Mediator and Cohesin complexes contribute to enhancer-promoter interactions and provide insights into the molecular mechanisms by which communication between enhancers and promoters is regulated.
Collapse
Affiliation(s)
- Shyam Ramasamy
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Abrar Aljahani
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Magdalena A Karpinska
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - T B Ngoc Cao
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Taras Velychko
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - J Neos Cruz
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Michael Lidschreiber
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - A Marieke Oudelaar
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
17
|
Islam Z, Saravanan B, Walavalkar K, Farooq U, Singh AK, Radhakrishnan S, Thakur J, Pandit A, Henikoff S, Notani D. Active enhancers strengthen insulation by RNA-mediated CTCF binding at chromatin domain boundaries. Genome Res 2023; 33:1-17. [PMID: 36650052 PMCID: PMC9977152 DOI: 10.1101/gr.276643.122] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 11/10/2022] [Indexed: 01/19/2023]
Abstract
Vertebrate genomes are partitioned into chromatin domains or topologically associating domains (TADs), which are typically bound by head-to-head pairs of CTCF binding sites. Transcription at domain boundaries correlates with better insulation; however, it is not known whether the boundary transcripts themselves contribute to boundary function. Here we characterize boundary-associated RNAs genome-wide, focusing on the disease-relevant INK4a/ARF and MYC TAD. Using CTCF site deletions and boundary-associated RNA knockdowns, we observe that boundary-associated RNAs facilitate recruitment and clustering of CTCF at TAD borders. The resulting CTCF enrichment enhances TAD insulation, enhancer-promoter interactions, and TAD gene expression. Importantly, knockdown of boundary-associated RNAs results in loss of boundary insulation function. Using enhancer deletions and CRISPRi of promoters, we show that active TAD enhancers, but not promoters, induce boundary-associated RNA transcription, thus defining a novel class of regulatory enhancer RNAs.
Collapse
Affiliation(s)
- Zubairul Islam
- National Center for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, Karnataka 560065, India;,Sastra Deemed University, Thanjavur, Tamil Nadu 613401, India
| | - Bharath Saravanan
- National Center for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, Karnataka 560065, India;,Sastra Deemed University, Thanjavur, Tamil Nadu 613401, India
| | - Kaivalya Walavalkar
- National Center for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, Karnataka 560065, India
| | - Umer Farooq
- National Center for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, Karnataka 560065, India;,The University of Trans-Disciplinary Health Sciences and Technology, Bangalore, Karnataka 560064, India
| | - Anurag Kumar Singh
- National Center for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, Karnataka 560065, India
| | - Sabarinathan Radhakrishnan
- National Center for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, Karnataka 560065, India
| | - Jitendra Thakur
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | - Awadhesh Pandit
- National Center for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, Karnataka 560065, India
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Dimple Notani
- National Center for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, Karnataka 560065, India
| |
Collapse
|
18
|
Gambi G, Mengus G, Davidson G, Demesmaeker E, Cuomo A, Bonaldi T, Katopodi V, Malouf GG, Leucci E, Davidson I. The LncRNA LENOX Interacts with RAP2C to Regulate Metabolism and Promote Resistance to MAPK Inhibition in Melanoma. Cancer Res 2022; 82:4555-4570. [PMID: 36214632 PMCID: PMC9755964 DOI: 10.1158/0008-5472.can-22-0959] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/27/2022] [Accepted: 09/21/2022] [Indexed: 01/24/2023]
Abstract
Tumor heterogeneity is a key feature of melanomas that hinders development of effective treatments. Aiming to overcome this, we identified LINC00518 (LENOX; lincRNA-enhancer of oxidative phosphorylation) as a melanoma-specific lncRNA expressed in all known melanoma cell states and essential for melanoma survival in vitro and in vivo. Mechanistically, LENOX promoted association of the RAP2C GTPase with mitochondrial fission regulator DRP1, increasing DRP1 S637 phosphorylation, mitochondrial fusion, and oxidative phosphorylation. LENOX expression was upregulated following treatment with MAPK inhibitors, facilitating a metabolic switch from glycolysis to oxidative phosphorylation and conferring resistance to MAPK inhibition. Consequently, combined silencing of LENOX and RAP2C synergized with MAPK inhibitors to eradicate melanoma cells. Melanomas are thus addicted to the lncRNA LENOX, which acts to optimize mitochondrial function during melanoma development and progression. SIGNIFICANCE The lncRNA LENOX is a novel regulator of melanoma metabolism, which can be targeted in conjunction with MAPK inhibitors to eradicate melanoma cells.
Collapse
Affiliation(s)
- Giovanni Gambi
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Gabrielle Mengus
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Guillaume Davidson
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | | | - Alessandro Cuomo
- Nuclear Proteomics Institute to Study Gene Expression, Milano, Italy
| | - Tiziana Bonaldi
- Nuclear Proteomics Institute to Study Gene Expression, Milano, Italy
| | - Vicky Katopodi
- Laboratory for RNA Cancer Biology, KU Leuven, Leuven, Belgium
| | - Gabriel G. Malouf
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Eleonora Leucci
- Laboratory for RNA Cancer Biology, KU Leuven, Leuven, Belgium.,Corresponding Authors: Irwin Davidson, Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries, Illkirch, 67404, France. E-mail: ; and Eleonora Leucci, Laboratory for RNA Cancer Biology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium. E-mail:
| | - Irwin Davidson
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Equipe Labélisée Ligue contre le Cancer.,Corresponding Authors: Irwin Davidson, Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries, Illkirch, 67404, France. E-mail: ; and Eleonora Leucci, Laboratory for RNA Cancer Biology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium. E-mail:
| |
Collapse
|
19
|
Stepien A, Dolata J, Gulanicz T, Bielewicz D, Bajczyk M, Smolinski DJ, Szweykowska-Kulinska Z, Jarmolowski A. Chromatin-associated microprocessor assembly is regulated by the U1 snRNP auxiliary protein PRP40. THE PLANT CELL 2022; 34:4920-4935. [PMID: 36087009 PMCID: PMC9709975 DOI: 10.1093/plcell/koac278] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 09/05/2022] [Indexed: 06/01/2023]
Abstract
In plants, microRNA (miRNA) biogenesis involves cotranscriptional processing of RNA polymerase II (RNAPII)-generated primary transcripts by a multi-protein complex termed the microprocessor. Here, we report that Arabidopsis (Arabidopsis thaliana) PRE-MRNA PROCESSING PROTEIN 40 (PRP40), the U1 snRNP auxiliary protein, positively regulates the recruitment of SERRATE, a core component of the plant microprocessor, to miRNA genes. The association of DICER-LIKE1 (DCL1), the microprocessor endoribonuclease, with chromatin was altered in prp40ab mutant plants. Impaired cotranscriptional microprocessor assembly was accompanied by RNAPII accumulation at miRNA genes and retention of miRNA precursors at their transcription sites in the prp40ab mutant plants. We show that cotranscriptional microprocessor assembly, regulated by AtPRP40, positively affects RNAPII transcription of miRNA genes and is important to reach the correct levels of produced miRNAs.
Collapse
Affiliation(s)
| | | | | | | | - Mateusz Bajczyk
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan 61-614, Poland
| | - Dariusz J Smolinski
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Torun 87-100, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun 87-100, Poland
| | | | | |
Collapse
|
20
|
Hazra R, Brine L, Garcia L, Benz B, Chirathivat N, Shen MM, Wilkinson JE, Lyons SK, Spector DL. Platr4 is an early embryonic lncRNA that exerts its function downstream on cardiogenic mesodermal lineage commitment. Dev Cell 2022; 57:2450-2468.e7. [PMID: 36347239 PMCID: PMC9680017 DOI: 10.1016/j.devcel.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 08/22/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022]
Abstract
The mammalian genome encodes thousands of long non-coding RNAs (lncRNAs), many of which are developmentally regulated and differentially expressed across tissues, suggesting their potential roles in cellular differentiation. Despite this expression pattern, little is known about how lncRNAs influence lineage commitment at the molecular level. Here, we demonstrate that perturbation of an embryonic stem cell/early embryonic lncRNA, pluripotency-associated transcript 4 (Platr4), directly influences the specification of cardiac-mesoderm-lineage differentiation. We show that Platr4 acts as a molecular scaffold or chaperone interacting with the Hippo-signaling pathway molecules Yap and Tead4 to regulate the expression of a downstream target gene, Ctgf, which is crucial to the cardiac-lineage program. Importantly, Platr4 knockout mice exhibit myocardial atrophy and valve mucinous degeneration, which are both associated with reduced cardiac output and sudden heart failure. Together, our findings provide evidence that Platr4 is required in cardiac-lineage specification and adult heart function in mice.
Collapse
Affiliation(s)
- Rasmani Hazra
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Lily Brine
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Libia Garcia
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Brian Benz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Napon Chirathivat
- Departments of Medicine, Genetics and Development, Urology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Michael M Shen
- Departments of Medicine, Genetics and Development, Urology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | | | - Scott K Lyons
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - David L Spector
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
21
|
He P, Zhang C, Ji Y, Ge MK, Yu Y, Zhang N, Yang S, Yu JX, Shen SM, Chen GQ. Epithelial cells-enriched lncRNA SNHG8 regulates chromatin condensation by binding to Histone H1s. Cell Death Differ 2022; 29:1569-1581. [PMID: 35140358 PMCID: PMC9345976 DOI: 10.1038/s41418-022-00944-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
Linker histone H1 proteins contain many variants in mammalian and can stabilize the condensed state of chromatin by binding to nucleosomes and promoting a more inaccessible structure of DNA. However, it is poorly understood how the binding of histone H1s to chromatin DNA is regulated. Screened as one of a collection of epithelial cells-enriched long non-coding RNAs (lncRNAs), here we found that small nucleolar RNA host gene 8 (SNHG8) is a chromatin-localized lncRNA and presents strong interaction and phase separation with histone H1 variants. Moreover, SNHG8 presents stronger ability to bind H1s than linker DNA, and outcompetes linker DNA for H1 binding. Consequently, loss of SNHG8 increases the amount of H1s that bind to chromatin, promotes chromatin condensation, and induces an epithelial differentiation-associated gene expression pattern. Collectively, our results propose that the highly abundant SNHG8 in epithelial cells keeps histone H1 variants out of nucleosome and its loss contributes to epithelial cell differentiation.
Collapse
Affiliation(s)
- Ping He
- State Key Laboratory of Oncogenes and Related Genes, and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043), Shanghai Cancer Institute, Renji hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200127, China
| | - Cheng Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, 200025, China
| | - Yan Ji
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Meng-Kai Ge
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, 200025, China
| | - Yun Yu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, 200025, China
| | - Na Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, 200025, China
| | - Shuo Yang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, 200025, China
| | - Jian-Xiu Yu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, SJTU-SM, Shanghai, 200025, China
| | - Shao-Ming Shen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, 200025, China.
| | - Guo-Qiang Chen
- State Key Laboratory of Oncogenes and Related Genes, and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043), Shanghai Cancer Institute, Renji hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200127, China. .,Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, 200025, China.
| |
Collapse
|
22
|
Co-transcriptional splicing efficiency is a gene-specific feature that can be regulated by TGFβ. Commun Biol 2022; 5:277. [PMID: 35347226 PMCID: PMC8960766 DOI: 10.1038/s42003-022-03224-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 03/03/2022] [Indexed: 11/26/2022] Open
Abstract
Differential splicing efficiency of specific introns is a mechanism that dramatically increases protein diversity, based on selection of alternative exons for the final mature mRNA. However, it is unclear whether splicing efficiency of introns within the same gene is coordinated and eventually regulated as a mechanism to control mature mRNA levels. Based on nascent chromatin-associated RNA-sequencing data, we now find that co-transcriptional splicing (CTS) efficiency tends to be similar between the different introns of a gene. We establish that two well-differentiated strategies for CTS efficiency exist, at the extremes of a gradient: short genes that produce high levels of pre-mRNA undergo inefficient splicing, while long genes with relatively low levels of pre-mRNA have an efficient splicing. Notably, we observe that genes with efficient CTS display a higher level of mature mRNA relative to their pre-mRNA levels. Further, we show that the TGFβ signal transduction pathway regulates the general CTS efficiency, causing changes in mature mRNA levels. Taken together, our data indicate that CTS efficiency is a gene-specific characteristic that can be regulated to control gene expression. Co-transcriptional splicing efficiency is a gene-specific characteristic that can be regulated by TGFβ to modulate gene expression.
Collapse
|
23
|
Garland W, Müller I, Wu M, Schmid M, Imamura K, Rib L, Sandelin A, Helin K, Jensen TH. Chromatin modifier HUSH co-operates with RNA decay factor NEXT to restrict transposable element expression. Mol Cell 2022; 82:1691-1707.e8. [PMID: 35349793 PMCID: PMC9433625 DOI: 10.1016/j.molcel.2022.03.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/14/2021] [Accepted: 03/01/2022] [Indexed: 12/12/2022]
Abstract
Transposable elements (TEs) are widespread genetic parasites known to be kept under tight transcriptional control. Here, we describe a functional connection between the mouse-orthologous “nuclear exosome targeting” (NEXT) and “human silencing hub” (HUSH) complexes, involved in nuclear RNA decay and the epigenetic silencing of TEs, respectively. Knocking out the NEXT component ZCCHC8 in embryonic stem cells results in elevated TE RNA levels. We identify a physical interaction between ZCCHC8 and the MPP8 protein of HUSH and establish that HUSH recruits NEXT to chromatin at MPP8-bound TE loci. However, while NEXT and HUSH both dampen TE RNA expression, their activities predominantly affect shorter non-polyadenylated and full-length polyadenylated transcripts, respectively. Indeed, our data suggest that the repressive action of HUSH promotes a condition favoring NEXT RNA decay activity. In this way, transcriptional and post-transcriptional machineries synergize to suppress the genotoxic potential of TE RNAs. Garland et al. report a physical and functional connection between the NEXT complex, involved in RNA decay, and the HUSH complex, involved in chromatin regulation. Together, NEXT and HUSH cooperate to control transposable element (TE) RNA expression in embryonic stem cells, suppressing pA− and pA+ transcripts, respectively.
Collapse
Affiliation(s)
- William Garland
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Iris Müller
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation for Stem Cell Biology, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark; Cell Biology Program and Center for Epigenetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mengjun Wu
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark; SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Manfred Schmid
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Katsutoshi Imamura
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Leonor Rib
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Albin Sandelin
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Helin
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation for Stem Cell Biology, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark; Cell Biology Program and Center for Epigenetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
24
|
Cellular fractionation reveals transcriptome responses of human fibroblasts to UV-C irradiation. Cell Death Dis 2022; 13:177. [PMID: 35210409 PMCID: PMC8873393 DOI: 10.1038/s41419-022-04634-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/27/2022] [Accepted: 02/07/2022] [Indexed: 12/17/2022]
Abstract
AbstractWhile cells activate a multifaceted DNA damage response to remove transcription-blocking DNA lesions, mechanisms to regulate genome-wide reduction of RNA synthesis and the paradoxical continuous loading of RNAP II at initiation sites are still poorly understood. Uncovering how dramatic changes to the transcriptional program contribute to TC-NER (transcription-coupled nucleotide excision repair) is important in DNA repair research. However, the functional significance of transcriptome dynamics and the mechanisms of chromatin attachment for thousands of unstudied human lncRNAs remain unclear. To address these questions, we examined UV-induced gene expression regulation in human fibroblasts by performing RNA-seq with fractionated chromatin-associated and cytoplasmic transcripts. This approach allowed us to separate the synthesis of nascent transcripts from the accumulation of mature RNAs. In addition to documenting the subcellular locations of coding transcripts, our results also provide a high-resolution view of the transcription activities of noncoding RNAs in response to cellular stress. At the same time, the data showed that vast majority of genes exhibit large changes in chromatin-associated nascent transcripts without corresponding changes in cytoplasmic mRNA levels. Distinct from protein-coding genes that transcripts with shorter length prefer to be recovered first, repression of lncRNA transcription after UV exposure is inactivated first on noncoding transcripts with longer length. This work provides an updated framework for cellular RNA organization in response to stress and may provide useful information in understanding how cells respond to transcription-blocking DNA damage.
Collapse
|
25
|
McGarvey AC, Kopp W, Vučićević D, Mattonet K, Kempfer R, Hirsekorn A, Bilić I, Gil M, Trinks A, Merks AM, Panáková D, Pombo A, Akalin A, Junker JP, Stainier DY, Garfield D, Ohler U, Lacadie SA. Single-cell-resolved dynamics of chromatin architecture delineate cell and regulatory states in zebrafish embryos. CELL GENOMICS 2022; 2:100083. [PMID: 36777038 PMCID: PMC9903790 DOI: 10.1016/j.xgen.2021.100083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/24/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022]
Abstract
DNA accessibility of cis-regulatory elements (CREs) dictates transcriptional activity and drives cell differentiation during development. While many genes regulating embryonic development have been identified, the underlying CRE dynamics controlling their expression remain largely uncharacterized. To address this, we produced a multimodal resource and genomic regulatory map for the zebrafish community, which integrates single-cell combinatorial indexing assay for transposase-accessible chromatin with high-throughput sequencing (sci-ATAC-seq) with bulk histone PTMs and Hi-C data to achieve a genome-wide classification of the regulatory architecture determining transcriptional activity in the 24-h post-fertilization (hpf) embryo. We characterized the genome-wide chromatin architecture at bulk and single-cell resolution, applying sci-ATAC-seq on whole 24-hpf stage zebrafish embryos, generating accessibility profiles for ∼23,000 single nuclei. We developed a genome segmentation method, ScregSeg (single-cell regulatory landscape segmentation), for defining regulatory programs, and candidate CREs, specific to one or more cell types. We integrated the ScregSeg output with bulk measurements for histone post-translational modifications and 3D genome organization and identified new regulatory principles between chromatin modalities prevalent during zebrafish development. Sci-ATAC-seq profiling of npas4l/cloche mutant embryos identified novel cellular roles for this hematovascular transcriptional master regulator and suggests an intricate mechanism regulating its expression. Our work defines regulatory architecture and principles in the zebrafish embryo and establishes a resource of cell-type-specific genome-wide regulatory annotations and candidate CREs, providing a valuable open resource for genomics, developmental, molecular, and computational biology.
Collapse
Affiliation(s)
- Alison C. McGarvey
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany,Quantitative Developmental Biology, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany
| | - Wolfgang Kopp
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany,Bioinformatics and Omics Data Science Platform, Berlin Institute for Medical Systems Biology, Max Delbrück Centre for Molecular Medicine, Berlin 10115, Germany
| | - Dubravka Vučićević
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany
| | - Kenny Mattonet
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Rieke Kempfer
- Epigenetic Regulation and Chromatin Architecture, Berlin Institute for Medical Systems Biology, Max Delbrück Centre for Molecular Medicine, Berlin, Germany,Institute for Biology, Humboldt Universität Berlin, Berlin 10115, Germany
| | - Antje Hirsekorn
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany
| | - Ilija Bilić
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany
| | - Marine Gil
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany
| | - Alexandra Trinks
- IRI Life Sciences, Humboldt Universität Berlin, Berlin 10115, Germany
| | - Anne Margarete Merks
- Electrochemical Signaling in Development and Disease, Max Delbrück Centre for Molecular Medicine, Berlin, Germany,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin 13125, Germany
| | - Daniela Panáková
- Electrochemical Signaling in Development and Disease, Max Delbrück Centre for Molecular Medicine, Berlin, Germany,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin 13125, Germany
| | - Ana Pombo
- Epigenetic Regulation and Chromatin Architecture, Berlin Institute for Medical Systems Biology, Max Delbrück Centre for Molecular Medicine, Berlin, Germany,Institute for Biology, Humboldt Universität Berlin, Berlin 10115, Germany
| | - Altuna Akalin
- Bioinformatics and Omics Data Science Platform, Berlin Institute for Medical Systems Biology, Max Delbrück Centre for Molecular Medicine, Berlin 10115, Germany
| | - Jan Philipp Junker
- Quantitative Developmental Biology, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany
| | - Didier Y.R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - David Garfield
- IRI Life Sciences, Humboldt Universität Berlin, Berlin 10115, Germany
| | - Uwe Ohler
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany,Institute for Biology, Humboldt Universität Berlin, Berlin 10115, Germany,Corresponding author
| | - Scott Allen Lacadie
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany,Berlin Institute of Health, Berlin 10178, Germany,Corresponding author
| |
Collapse
|
26
|
Zaepfel BL, Rothstein JD. Polyadenylated RNA and RNA-Binding Proteins Exhibit Unique Response to Hyperosmotic Stress. Front Cell Dev Biol 2021; 9:809859. [PMID: 34970554 PMCID: PMC8712688 DOI: 10.3389/fcell.2021.809859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Stress granule formation is a complex and rapidly evolving process that significantly disrupts cellular metabolism in response to a variety of cellular stressors. Recently, it has become evident that different chemical stressors lead to the formation of compositionally distinct stress granules. However, it is unclear which proteins are required for the formation of stress granules under different conditions. In addition, the effect of various stressors on polyadenylated RNA metabolism remains enigmatic. Here, we demonstrate that G3BP1/2, which are common stress granule components, are not required for the formation of stress granules specifically during osmotic stress induced by sorbitol and related polyols. Furthermore, sorbitol-induced osmotic stress leads to significant depletion of nuclear polyadenylated RNA, a process that we demonstrate is dependent on active mRNA export, as well as cytoplasmic and subnuclear shifts in the presence of many nuclear RNA-binding proteins. We assessed the function of multiple shifted RBPs and found that hnRNP U, but not TDP-43 or hnRNP I, exhibit reduced function following this cytoplasmic shift. Finally, we observe that multiple stress pathways lead to a significant reduction in transcription, providing a possible explanation for our inability to observe loss of TDP-43 or hnRNP I function. Overall, we identify unique outcomes following osmotic stress that provide important insight into the regulation of RNA-binding protein localization and function.
Collapse
Affiliation(s)
- Benjamin L. Zaepfel
- Biochemistry, Cellular and Molecular Biology Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Molecular Biology and Genetics Department, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jeffrey D. Rothstein
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
27
|
Guo H, Golczer G, Wittner BS, Langenbucher A, Zachariah M, Dubash TD, Hong X, Comaills V, Burr R, Ebright RY, Horwitz E, Vuille JA, Hajizadeh S, Wiley DF, Reeves BA, Zhang JM, Niederhoffer KL, Lu C, Wesley B, Ho U, Nieman LT, Toner M, Vasudevan S, Zou L, Mostoslavsky R, Maheswaran S, Lawrence MS, Haber DA. NR4A1 regulates expression of immediate early genes, suppressing replication stress in cancer. Mol Cell 2021; 81:4041-4058.e15. [PMID: 34624217 PMCID: PMC8549465 DOI: 10.1016/j.molcel.2021.09.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/23/2021] [Accepted: 09/12/2021] [Indexed: 01/14/2023]
Abstract
Deregulation of oncogenic signals in cancer triggers replication stress. Immediate early genes (IEGs) are rapidly and transiently expressed following stressful signals, contributing to an integrated response. Here, we find that the orphan nuclear receptor NR4A1 localizes across the gene body and 3' UTR of IEGs, where it inhibits transcriptional elongation by RNA Pol II, generating R-loops and accessible chromatin domains. Acute replication stress causes immediate dissociation of NR4A1 and a burst of transcriptionally poised IEG expression. Ectopic expression of NR4A1 enhances tumorigenesis by breast cancer cells, while its deletion leads to massive chromosomal instability and proliferative failure, driven by deregulated expression of its IEG target, FOS. Approximately half of breast and other primary cancers exhibit accessible chromatin domains at IEG gene bodies, consistent with this stress-regulatory pathway. Cancers that have retained this mechanism in adapting to oncogenic replication stress may be dependent on NR4A1 for their proliferation.
Collapse
MESH Headings
- 3' Untranslated Regions
- Animals
- Antineoplastic Agents/pharmacology
- Binding Sites
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Proliferation/drug effects
- Chromatin Assembly and Disassembly
- Female
- Gene Expression Regulation, Neoplastic
- Genomic Instability
- HEK293 Cells
- Humans
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/metabolism
- Indoles/pharmacology
- MCF-7 Cells
- Mice, Inbred NOD
- Mice, SCID
- Mitosis/drug effects
- Neoplastic Cells, Circulating/drug effects
- Neoplastic Cells, Circulating/metabolism
- Neoplastic Cells, Circulating/pathology
- Nuclear Receptor Subfamily 4, Group A, Member 1/antagonists & inhibitors
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Phenylacetates/pharmacology
- Proto-Oncogene Proteins c-fos/genetics
- Proto-Oncogene Proteins c-fos/metabolism
- R-Loop Structures
- RNA Polymerase II/genetics
- RNA Polymerase II/metabolism
- Signal Transduction
- Transcription Elongation, Genetic
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Hongshan Guo
- Massachusetts General Hospital Cancer Center, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Gabriel Golczer
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Ben S Wittner
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | | | | | | | - Xin Hong
- Massachusetts General Hospital Cancer Center, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | | | - Risa Burr
- Massachusetts General Hospital Cancer Center, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | | | - Elad Horwitz
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Joanna A Vuille
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | | | - Devon F Wiley
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | | | - Jia-Min Zhang
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | | | - Chenyue Lu
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Benjamin Wesley
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Uyen Ho
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Linda T Nieman
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Mehmet Toner
- Center for Bioengineering in Medicine and Shriners Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Shobha Vasudevan
- Massachusetts General Hospital Cancer Center, Boston, MA, USA; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Boston, MA, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Raul Mostoslavsky
- Massachusetts General Hospital Cancer Center, Boston, MA, USA; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Shyamala Maheswaran
- Massachusetts General Hospital Cancer Center, Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center, Boston, MA, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Daniel A Haber
- Massachusetts General Hospital Cancer Center, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
28
|
Pnueli L, Shalev D, Refael T, David C, Boehm U, Melamed P. Proliferating primary pituitary cells as a model for studying regulation of gonadotrope chromatin and gene expression. Mol Cell Endocrinol 2021; 533:111349. [PMID: 34090968 DOI: 10.1016/j.mce.2021.111349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/20/2021] [Accepted: 05/29/2021] [Indexed: 12/27/2022]
Abstract
The chromatin organization of the gonadotropin gene promoters in the pituitary gonadotropes plays a major role in determining how these gene are activated, but is difficult to study because of the low numbers of these cells in the pituitary gland. Here, we set out to create a cell model to study gonadotropin chromatin, and found that by optimizing cell culture conditions, we can maintain stable proliferating cultures of primary non-transformed gonadotrope cells over weeks to months. Although expression of the gonadotropin genes drops very low, these cells are enriched in gonadotrope markers and respond to GnRH. Furthermore, >85% of the cells contained Lhb and/or Fshb mature transcripts; though these were virtually restricted to the nuclei. The gonadotropes were harvested initially due to expression of dTOMATO, following activation of Cre recombinase by the Gnrhr promoter. Over 6 mo in culture, a similar proportion of the recombined DNA was maintained (i.e. cells derived from the original gonadotropes or having acquired Gnrhr-promoter activity), together with cells of a distinct origin. The cells are enriched with markers of proliferating pituitary and stem cells, including Sox2, suggesting that multipotent precursor cells might have proliferated and differentiated into gonadotrope-like cells. These cell cultures offer a new and versatile methodology for research in gonadotrope differentiation and function, and can provide enough primary cells for chromatin immunoprecipitation and epigenetic analysis, while our initial studies also indicate a possible regulatory mechanism that might be involved in the nuclear export of gonadotropin gene mRNAs.
Collapse
Affiliation(s)
- Lilach Pnueli
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Dor Shalev
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Tal Refael
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Cfir David
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Ulrich Boehm
- Department of Experimental Pharmacology, Center for Molecular Signaling, Saarland University School of Medicine, Homburg, Germany
| | - Philippa Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
| |
Collapse
|
29
|
The p53 transcriptional response across tumor types reveals core and senescence-specific signatures modulated by long noncoding RNAs. Proc Natl Acad Sci U S A 2021; 118:2025539118. [PMID: 34326251 PMCID: PMC8346867 DOI: 10.1073/pnas.2025539118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The work by Tesfaye and colleagues defines universal and tumor type–specific features of the p53 tumor suppressor transcriptional network. This study determines a “core” signature of the p53 response across different oncogenic contexts, which defines a universal set of p53 target genes. In addition, this study clarifies the basis for outcome specificity downstream of p53 activation in different oncogenic contexts. We observe that while apoptosis in lymphoma cells is not primarily determined by p53’s transcriptional activity, p53 indirectly promotes senescence in lung adenocarcinoma and sarcoma cells by activating the cis-regulatory long noncoding RNA Pvt1b, which represses Myc levels and its proliferative function. The p53 pathway is a universal tumor suppressor mechanism that limits tumor progression by triggering apoptosis or permanent cell cycle arrest, called senescence. In recent years, efforts to reactivate p53 function in cancer have proven to be a successful therapeutic strategy in murine models and have gained traction with the development of a range of small molecules targeting mutant p53. However, knowledge of the downstream mediators of p53 reactivation in different oncogenic contexts has been limited. Here, we utilized a panel of murine cancer cell lines from three distinct tumor types susceptible to alternative outcomes following p53 restoration to define unique and shared p53 transcriptional signatures. While we found that the majority of p53-bound sites and p53-responsive transcripts are tumor-type specific, analysis of shared targets identified a core signature of genes activated by p53 across all contexts. Furthermore, we identified repression of E2F and Myc target genes as a key feature of senescence. Characterization of p53-induced transcripts revealed core and senescence-specific long noncoding RNAs (lncRNAs) that are predominantly chromatin associated and whose production is coupled to cis-regulatory activities. Functional investigation of the contributions of p53-induced lncRNAs to p53-dependent outcomes highlighted Pvt1b, the p53-dependent isoform of Pvt1, as a mediator of p53-dependent senescence via Myc repression. Inhibition of Pvt1b led to decreased activation of senescence markers and increased levels of markers of proliferation. These findings shed light on the core and outcome-specific p53 restoration signatures across different oncogenic contexts and underscore the key role of the p53-Pvt1b-Myc regulatory axis in mediating proliferative arrest.
Collapse
|
30
|
Herrero-Ruiz A, Martínez-García PM, Terrón-Bautista J, Millán-Zambrano G, Lieberman JA, Jimeno-González S, Cortés-Ledesma F. Topoisomerase IIα represses transcription by enforcing promoter-proximal pausing. Cell Rep 2021; 35:108977. [PMID: 33852840 PMCID: PMC8052185 DOI: 10.1016/j.celrep.2021.108977] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 02/05/2021] [Accepted: 03/19/2021] [Indexed: 12/19/2022] Open
Abstract
Accumulation of topological stress in the form of DNA supercoiling is inherent to the advance of RNA polymerase II (Pol II) and needs to be resolved by DNA topoisomerases to sustain productive transcriptional elongation. Topoisomerases are therefore considered positive facilitators of transcription. Here, we show that, in contrast to this general assumption, human topoisomerase IIα (TOP2A) activity at promoters represses transcription of immediate early genes such as c-FOS, maintaining them under basal repressed conditions. Thus, TOP2A inhibition creates a particular topological context that results in rapid release from promoter-proximal pausing and transcriptional upregulation, which mimics the typical bursting behavior of these genes in response to physiological stimulus. We therefore describe the control of promoter-proximal pausing by TOP2A as a layer for the regulation of gene expression, which can act as a molecular switch to rapidly activate transcription, possibly by regulating the accumulation of DNA supercoiling at promoter regions.
Collapse
Affiliation(s)
- Andrés Herrero-Ruiz
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain; Topology and DNA Breaks Group, Spanish National Cancer Centre (CNIO), Madrid 28029, Spain
| | - Pedro Manuel Martínez-García
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain
| | - José Terrón-Bautista
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain
| | - Gonzalo Millán-Zambrano
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain
| | | | - Silvia Jimeno-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain; Departamento de Genética, Universidad de Sevilla, Sevilla 41080, Spain.
| | - Felipe Cortés-Ledesma
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain; Topology and DNA Breaks Group, Spanish National Cancer Centre (CNIO), Madrid 28029, Spain.
| |
Collapse
|
31
|
Ntini E, Vang Ørom UA. Targeting Polyadenylation for Retention of RNA at Chromatin. Methods Mol Biol 2021; 2161:51-58. [PMID: 32681505 DOI: 10.1007/978-1-0716-0680-3_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The various steps of RNA polymerase II transcription, including transcription initiation, splicing, and termination, are interlinked and tightly coordinated. Efficient 3'end processing is defined by sequence motifs emerging in the nascent-transcribed RNA strand and the cotranscriptional binding of regulatory proteins. The processing of a mature 3'end consists of cleavage and polyadenylation and is coupled with RNA polymerase II transcription termination and the dissociation of the nascent RNA transcript from the chromatin-associated transcriptional template. The subcellular and subnuclear topological specificity of the various RNA species is important for their functions. For instance, the formation of RNA-binding protein interactions, critical for the final outcome of gene expression, may require the nucleoplasmic fully spliced and polyadenylated form of an RNA transcript. Thus, interfering with the critical step of transcription termination and 3'end formation provides a means for assaying the functional potential of a given RNA of interest.In this protocol, we describe a method for blocking 3'end processing of the nascent RNA transcript, by using RNase H-inactive antisense oligonucleotides targeting cleavage and polyadenylation, delivered via transient transfection in cell culture.
Collapse
Affiliation(s)
- Evgenia Ntini
- Max Planck Institute for Molecular Genetics, Berlin, Germany. .,Freie Universität Berlin, Berlin, Germany.
| | | |
Collapse
|
32
|
Caizzi L, Monteiro-Martins S, Schwalb B, Lysakovskaia K, Schmitzova J, Sawicka A, Chen Y, Lidschreiber M, Cramer P. Efficient RNA polymerase II pause release requires U2 snRNP function. Mol Cell 2021; 81:1920-1934.e9. [PMID: 33689748 DOI: 10.1016/j.molcel.2021.02.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 01/07/2021] [Accepted: 02/10/2021] [Indexed: 12/21/2022]
Abstract
Transcription by RNA polymerase II (Pol II) is coupled to pre-mRNA splicing, but the underlying mechanisms remain poorly understood. Co-transcriptional splicing requires assembly of a functional spliceosome on nascent pre-mRNA, but whether and how this influences Pol II transcription remains unclear. Here we show that inhibition of pre-mRNA branch site recognition by the spliceosome component U2 snRNP leads to a widespread and strong decrease in new RNA synthesis from human genes. Multiomics analysis reveals that inhibition of U2 snRNP function increases the duration of Pol II pausing in the promoter-proximal region, impairs recruitment of the pause release factor P-TEFb, and reduces Pol II elongation velocity at the beginning of genes. Our results indicate that efficient release of paused Pol II into active transcription elongation requires the formation of functional spliceosomes and that eukaryotic mRNA biogenesis relies on positive feedback from the splicing machinery to the transcription machinery.
Collapse
Affiliation(s)
- Livia Caizzi
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Sara Monteiro-Martins
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Björn Schwalb
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Kseniia Lysakovskaia
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Jana Schmitzova
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Anna Sawicka
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Ying Chen
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Michael Lidschreiber
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
33
|
Gurumurthy A, Yu DT, Stees JR, Chamales P, Gavrilova E, Wassel P, Li L, Stribling D, Chen J, Brackett M, Ishov AM, Xie M, Bungert J. Super-enhancer mediated regulation of adult β-globin gene expression: the role of eRNA and Integrator. Nucleic Acids Res 2021; 49:1383-1396. [PMID: 33476375 PMCID: PMC7897481 DOI: 10.1093/nar/gkab002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 12/14/2020] [Accepted: 01/04/2021] [Indexed: 01/05/2023] Open
Abstract
Super-enhancers (SEs) mediate high transcription levels of target genes. Previous studies have shown that SEs recruit transcription complexes and generate enhancer RNAs (eRNAs). We characterized transcription at the human and murine β-globin locus control region (LCR) SE. We found that the human LCR is capable of recruiting transcription complexes independently from linked globin genes in transgenic mice. Furthermore, LCR hypersensitive site 2 (HS2) initiates the formation of bidirectional transcripts in transgenic mice and in the endogenous β-globin gene locus in murine erythroleukemia (MEL) cells. HS2 3′eRNA is relatively unstable and remains in close proximity to the globin gene locus. Reducing the abundance of HS2 3′eRNA leads to a reduction in β-globin gene transcription and compromises RNA polymerase II (Pol II) recruitment at the promoter. The Integrator complex has been shown to terminate eRNA transcription. We demonstrate that Integrator interacts downstream of LCR HS2. Inducible ablation of Integrator function in MEL or differentiating primary human CD34+ cells causes a decrease in expression of the adult β-globin gene and accumulation of Pol II and eRNA at the LCR. The data suggest that transcription complexes are assembled at the LCR and transferred to the globin genes by mechanisms that involve Integrator mediated release of Pol II and eRNA from the LCR.
Collapse
Affiliation(s)
- Aishwarya Gurumurthy
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, UF Health Cancer Center, Powell-Gene Therapy Center, Gainesville, FL 32610, USA
| | - David T Yu
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, UF Health Cancer Center, Powell-Gene Therapy Center, Gainesville, FL 32610, USA
| | - Jared R Stees
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, UF Health Cancer Center, Powell-Gene Therapy Center, Gainesville, FL 32610, USA
| | - Pamela Chamales
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, UF Health Cancer Center, Powell-Gene Therapy Center, Gainesville, FL 32610, USA
| | - Ekaterina Gavrilova
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, UF Health Cancer Center, Powell-Gene Therapy Center, Gainesville, FL 32610, USA
| | - Paul Wassel
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, UF Health Cancer Center, Powell-Gene Therapy Center, Gainesville, FL 32610, USA
| | - Lu Li
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, UF Health Cancer Center, Powell-Gene Therapy Center, Gainesville, FL 32610, USA
| | - Daniel Stribling
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, UF Health Cancer Center, Powell-Gene Therapy Center, Gainesville, FL 32610, USA.,Department of Molecular Genetics and Microbiology, Gainesville, FL 32610, USA
| | - Jinyang Chen
- Department of Statistics, University of Georgia, Athens, GA 30602, USA
| | - Marissa Brackett
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, UF Health Cancer Center, Powell-Gene Therapy Center, Gainesville, FL 32610, USA
| | - Alexander M Ishov
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Mingyi Xie
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, UF Health Cancer Center, Powell-Gene Therapy Center, Gainesville, FL 32610, USA
| | - Jörg Bungert
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, UF Health Cancer Center, Powell-Gene Therapy Center, Gainesville, FL 32610, USA
| |
Collapse
|
34
|
BRCA1 and RNAi factors promote repair mediated by small RNAs and PALB2-RAD52. Nature 2021; 591:665-670. [PMID: 33536619 PMCID: PMC8245199 DOI: 10.1038/s41586-020-03150-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 12/21/2020] [Indexed: 01/30/2023]
Abstract
Strong connections exist between R-loops (three-stranded structures harbouring an RNA:DNA hybrid and a displaced single-strand DNA), genome instability and human disease1-5. Indeed, R-loops are favoured in relevant genomic regions as regulators of certain physiological processes through which homeostasis is typically maintained. For example, transcription termination pause sites regulated by R-loops can induce the synthesis of antisense transcripts that enable the formation of local, RNA interference (RNAi)-driven heterochromation6. Pause sites are also protected against endogenous single-stranded DNA breaks by BRCA17. Hypotheses about how DNA repair is enacted at pause sites include a role for RNA, which is emerging as a normal, albeit unexplained, regulator of genome integrity8. Here we report that a species of single-stranded, DNA-damage-associated small RNA (sdRNA) is generated by a BRCA1-RNAi protein complex. sdRNAs promote DNA repair driven by the PALB2-RAD52 complex at transcriptional termination pause sites that form R-loops and are rich in single-stranded DNA breaks. sdRNA repair operates in both quiescent (G0) and proliferating cells. Thus, sdRNA repair can occur in intact tissue and/or stem cells, and may contribute to tumour suppression mediated by BRCA1.
Collapse
|
35
|
Sawicka A, Villamil G, Lidschreiber M, Darzacq X, Dugast-Darzacq C, Schwalb B, Cramer P. Transcription activation depends on the length of the RNA polymerase II C-terminal domain. EMBO J 2021; 40:e107015. [PMID: 33555055 PMCID: PMC8090853 DOI: 10.15252/embj.2020107015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/04/2021] [Accepted: 01/13/2021] [Indexed: 01/02/2023] Open
Abstract
Eukaryotic RNA polymerase II (Pol II) contains a tail‐like, intrinsically disordered carboxy‐terminal domain (CTD) comprised of heptad‐repeats, that functions in coordination of the transcription cycle and in coupling transcription to co‐transcriptional processes. The CTD repeat number varies between species and generally increases with genome size, but the reasons for this are unclear. Here, we show that shortening the CTD in human cells to half of its length does not generally change pre‐mRNA synthesis or processing in cells. However, CTD shortening decreases the duration of promoter‐proximal Pol II pausing, alters transcription of putative enhancer elements, and delays transcription activation after stimulation of the MAP kinase pathway. We suggest that a long CTD is required for efficient enhancer‐dependent recruitment of Pol II to target genes for their rapid activation.
Collapse
Affiliation(s)
- Anna Sawicka
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Gabriel Villamil
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Michael Lidschreiber
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.,CIRM Center of Excellence, University of California, Berkeley, CA, USA
| | - Claire Dugast-Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.,CIRM Center of Excellence, University of California, Berkeley, CA, USA
| | - Björn Schwalb
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
36
|
Wanowska E, Kubiak M, Makałowska I, Szcześniak MW. A chromatin-associated splicing isoform of OIP5-AS1 acts in cis to regulate the OIP5 oncogene. RNA Biol 2021; 18:1834-1845. [PMID: 33404283 PMCID: PMC8582974 DOI: 10.1080/15476286.2021.1871816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A large portion of the human genome is transcribed into long noncoding RNAs that can range from 200 nucleotides to several kilobases in length. The number of identified lncRNAs is still growing, but only a handful of them have been functionally characterized. However, it is known that the functions of lncRNAs are closely related to their subcellular localization. Cytoplasmic lncRNAs can regulate mRNA stability, affect translation and act as miRNA sponges, while nuclear-retained long noncoding RNAs have been reported to be involved in transcriptional control, chromosome scaffolding, modulation of alternative splicing and chromatin remodelling. Through these processes, lncRNAs have diverse regulatory roles in cell biology and diseases. OIP5-AS1 (also known as Cyrano), a poorly characterized lncRNA expressed antisense to the OIP5 oncogene, is deregulated in multiple cancers. We showed that one of the OIP5-AS1 splicing forms (ENST00000501665.2) is retained in the cell nucleus where it associates with chromatin, thus narrowing down the spectrum of its possible mechanisms of action. Its knockdown with antisense LNA gapmeRs led to inhibited expression of a sense partner, OIP5, strongly suggesting a functional coupling between OIP5 and ENST00000501665.2. A subsequent bioinformatics analysis followed by RAP-MS and RNA Immunoprecipitation experiments suggested its possible mode of action; in particular, we found that ENST00000501665.2 directly binds to a number of nuclear proteins, including SMARCA4, a component of the SWI/SNF chromatin remodelling complex, whose binding motif is located in the promoter of the OIP5 oncogene.
Collapse
Affiliation(s)
- Elżbieta Wanowska
- Faculty of Biology, Adam Mickiewicz University in Poznan, Institute of Human Biology and Evolution, Uniwersytetu Poznańskiego 6, Poznan, Poland
| | - Magdalena Kubiak
- Faculty of Biology, Adam Mickiewicz University in Poznan, Institute of Human Biology and Evolution, Uniwersytetu Poznańskiego 6, Poznan, Poland
| | - Izabela Makałowska
- Faculty of Biology, Adam Mickiewicz University in Poznan, Institute of Human Biology and Evolution, Uniwersytetu Poznańskiego 6, Poznan, Poland
| | - Michał Wojciech Szcześniak
- Faculty of Biology, Adam Mickiewicz University in Poznan, Institute of Human Biology and Evolution, Uniwersytetu Poznańskiego 6, Poznan, Poland
| |
Collapse
|
37
|
Abstract
Recent advances in sequencing technologies have uncovered the existence of thousands of long noncoding RNAs (lncRNAs) with dysregulated expression in cancer. As a result, there is burgeoning interest in understanding their function and biological significance in both homeostasis and disease. RNA interference (RNAi) enables sequence-specific gene silencing and can, in principle, be employed to silence virtually any gene. However, when applied to lncRNAs, it is important to consider current limitations in their annotation and current principles regarding lncRNA regulation and function when assessing their phenotype in cancer cell lines. In this chapter we describe the analysis of lncRNA splicing variant expression, including subcellular localization, transfection of siRNAs in cancer cell lines, and validation of gene silencing by quantitative PCR and single molecule in situ hybridization. All protocols can be performed in a laboratory with essential equipment for cell culture, molecular biology, and imaging.
Collapse
|
38
|
Chang KC, Diermeier SD, Yu AT, Brine LD, Russo S, Bhatia S, Alsudani H, Kostroff K, Bhuiya T, Brogi E, Pappin DJ, Bennett CF, Rigo F, Spector DL. MaTAR25 lncRNA regulates the Tensin1 gene to impact breast cancer progression. Nat Commun 2020; 11:6438. [PMID: 33353933 PMCID: PMC7755919 DOI: 10.1038/s41467-020-20207-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 11/20/2020] [Indexed: 12/31/2022] Open
Abstract
Misregulation of long non-coding RNA (lncRNA) genes has been linked to a wide variety of cancer types. Here we report on Mammary Tumor Associated RNA 25 (MaTAR25), a nuclear enriched and chromatin associated lncRNA that plays a role in mammary tumor cell proliferation, migration, and invasion, both in vitro and in vivo. MaTAR25 functions by interacting with purine rich element binding protein B (PURB), and associating with a major downstream target gene Tensin1 (Tns1) to regulate its expression in trans. The Tns1 protein product is a critical component of focal adhesions linking signaling between the extracellular matrix and the actin cytoskeleton. Knockout of MaTAR25 results in down-regulation of Tns1 leading to a reorganization of the actin cytoskeleton, and a reduction of focal adhesions and microvilli. We identify LINC01271 as the human ortholog of MaTAR25, and importantly, increased expression of LINC01271 is associated with poor patient prognosis and metastasis. Our findings demonstrate that LINC01271 represents a potential therapeutic target to alter breast cancer progression.
Collapse
Affiliation(s)
- Kung-Chi Chang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, New York, USA
- Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Sarah D Diermeier
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, New York, USA
- Department of Biochemistry, University of Otago, Dunedin, 9016, New Zealand
| | - Allen T Yu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, New York, USA
- Genetics Program, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Lily D Brine
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, New York, USA
| | - Suzanne Russo
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, New York, USA
| | - Sonam Bhatia
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, New York, USA
| | - Habeeb Alsudani
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, New York, USA
| | - Karen Kostroff
- Department of Surgical Oncology, Northwell Health, Lake Success, NY, 11042, USA
| | - Tawfiqul Bhuiya
- Department of Pathology, Northwell Health, Lake Success, NY, 11042, USA
| | - Edi Brogi
- Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Darryl J Pappin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, New York, USA
| | | | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA, 92010, USA
| | - David L Spector
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, New York, USA.
- Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY, 11794, USA.
- Genetics Program, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
39
|
Guerrero-Martínez JA, Ceballos-Chávez M, Koehler F, Peiró S, Reyes JC. TGFβ promotes widespread enhancer chromatin opening and operates on genomic regulatory domains. Nat Commun 2020; 11:6196. [PMID: 33273453 PMCID: PMC7713251 DOI: 10.1038/s41467-020-19877-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
The Transforming Growth Factor-β (TGFβ) signaling pathway controls transcription by regulating enhancer activity. How TGFβ-regulated enhancers are selected and what chromatin changes are associated with TGFβ-dependent enhancers regulation are still unclear. Here we report that TGFβ treatment triggers fast and widespread increase in chromatin accessibility in about 80% of the enhancers of normal mouse mammary epithelial-gland cells, irrespective of whether they are activated, repressed or not regulated by TGFβ. This enhancer opening depends on both the canonical and non-canonical TGFβ pathways. Most TGFβ-regulated genes are located around enhancers regulated in the same way, often creating domains of several co-regulated genes that we term TGFβ regulatory domains (TRD). CRISPR-mediated inactivation of enhancers within TRDs impairs TGFβ-dependent regulation of all co-regulated genes, demonstrating that enhancer targeting is more promiscuous than previously anticipated. The area of TRD influence is restricted by topologically associating domains (TADs) borders, causing a bias towards co-regulation within TADs.
Collapse
Affiliation(s)
- Jose A Guerrero-Martínez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Avenida Americo Vespucio 24, 41092, Seville, Spain
| | - María Ceballos-Chávez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Avenida Americo Vespucio 24, 41092, Seville, Spain
| | - Florian Koehler
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Sandra Peiró
- Vall d'Hebron Institute of Oncology (VHIO), 08035, Barcelona, Spain
| | - Jose C Reyes
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Avenida Americo Vespucio 24, 41092, Seville, Spain.
| |
Collapse
|
40
|
N 6-Methyladenosine co-transcriptionally directs the demethylation of histone H3K9me2. Nat Genet 2020; 52:870-877. [PMID: 32778823 DOI: 10.1038/s41588-020-0677-3] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/06/2020] [Indexed: 12/23/2022]
Abstract
A dynamic epigenome is critical for appropriate gene expression in development and health1-5. Central to this is the intricate process of transcription6-11, which integrates cellular signaling with chromatin changes, transcriptional machinery and modifications to messenger RNA, such as N6-methyladenosine (m6A), which is co-transcriptionally incorporated. The integration of these aspects of the dynamic epigenome, however, is not well understood mechanistically. Here we show that the repressive histone mark H3K9me2 is specifically removed by the induction of m6A-modified transcripts. We demonstrate that the methyltransferase METTL3/METTL14 regulates H3K9me2 modification. We observe a genome-wide correlation between m6A and occupancy by the H3K9me2 demethylase KDM3B, and we find that the m6A reader YTHDC1 physically interacts with and recruits KDM3B to m6A-associated chromatin regions, promoting H3K9me2 demethylation and gene expression. This study establishes a direct link between m6A and dynamic chromatin modification and provides mechanistic insight into the co-transcriptional interplay between RNA modifications and histone modifications.
Collapse
|
41
|
Zhang C, Chen L, Peng D, Jiang A, He Y, Zeng Y, Xie C, Zhou H, Luo X, Liu H, Chen L, Ren J, Wang W, Zhao Y. METTL3 and N6-Methyladenosine Promote Homologous Recombination-Mediated Repair of DSBs by Modulating DNA-RNA Hybrid Accumulation. Mol Cell 2020; 79:425-442.e7. [PMID: 32615088 DOI: 10.1016/j.molcel.2020.06.017] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/15/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022]
Abstract
Double-strand breaks (DSBs) are the most deleterious DNA lesions, which, if left unrepaired, may lead to genome instability or cell death. Here, we report that, in response to DSBs, the RNA methyltransferase METTL3 is activated by ATM-mediated phosphorylation at S43. Phosphorylated METTL3 is then localized to DNA damage sites, where it methylates the N6 position of adenosine (m6A) in DNA damage-associated RNAs, which recruits the m6A reader protein YTHDC1 for protection. In this way, the METTL3-m6A-YTHDC1 axis modulates accumulation of DNA-RNA hybrids at DSBs sites, which then recruit RAD51 and BRCA1 for homologous recombination (HR)-mediated repair. METTL3-deficient cells display defective HR, accumulation of unrepaired DSBs, and genome instability. Accordingly, depletion of METTL3 significantly enhances the sensitivity of cancer cells and murine xenografts to DNA damage-based therapy. These findings uncover the function of METTL3 and YTHDC1 in HR-mediated DSB repair, which may have implications for cancer therapy.
Collapse
Affiliation(s)
- Canfeng Zhang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Liping Chen
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Di Peng
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510006, China
| | - Ao Jiang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yunru He
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yanru Zeng
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510006, China
| | - Chen Xie
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Haoxian Zhou
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaotong Luo
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510006, China
| | - Haiying Liu
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Liang Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jian Ren
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510006, China
| | - Wengong Wang
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Yong Zhao
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510006, China.
| |
Collapse
|
42
|
Martone J, Lisi M, Castagnetti F, Rosa A, Di Carlo V, Blanco E, Setti A, Mariani D, Colantoni A, Santini T, Perone L, Di Croce L, Bozzoni I. Trans-generational epigenetic regulation associated with the amelioration of Duchenne Muscular Dystrophy. EMBO Mol Med 2020; 12:e12063. [PMID: 32596946 PMCID: PMC7411655 DOI: 10.15252/emmm.202012063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 01/04/2023] Open
Abstract
Exon skipping is an effective strategy for the treatment of many Duchenne Muscular Dystrophy (DMD) mutations. Natural exon skipping observed in several DMD cases can help in identifying novel therapeutic tools. Here, we show a DMD study case where the lack of a splicing factor (Celf2a), which results in exon skipping and dystrophin rescue, is due to a maternally inherited trans‐generational epigenetic silencing. We found that the study case and his mother express a repressive long non‐coding RNA, DUXAP8, whose presence correlates with silencing of the Celf2a coding region. We also demonstrate that DUXAP8 expression is lost upon cell reprogramming and that, upon induction of iPSCs into myoblasts, Celf2a expression is recovered leading to the loss of exon skipping and loss of dystrophin synthesis. Finally, CRISPR/Cas9 inactivation of the splicing factor Celf2a was proven to ameliorate the pathological state in other DMD backgrounds establishing Celf2a ablation or inactivation as a novel therapeutic approach for the treatment of Duchenne Muscular Dystrophy.
Collapse
Affiliation(s)
- Julie Martone
- Department of Biology and Biotechnology, 'Charles Darwin', Sapienza University of Rome, Rome, Italy.,CNR Institute of Molecular Biology and Pathology (IBPM), Rome, Italy
| | - Michela Lisi
- Department of Biology and Biotechnology, 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Francesco Castagnetti
- Department of Biology and Biotechnology, 'Charles Darwin', Sapienza University of Rome, Rome, Italy.,Center for Human Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Alessandro Rosa
- Department of Biology and Biotechnology, 'Charles Darwin', Sapienza University of Rome, Rome, Italy.,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | | | | | - Adriano Setti
- Department of Biology and Biotechnology, 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Davide Mariani
- Center for Human Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Alessio Colantoni
- Department of Biology and Biotechnology, 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Tiziana Santini
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Lucia Perone
- Cell Culture and Cytogenetics Core, Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Luciano Di Croce
- Center for Genomic Regulation, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Irene Bozzoni
- Department of Biology and Biotechnology, 'Charles Darwin', Sapienza University of Rome, Rome, Italy.,CNR Institute of Molecular Biology and Pathology (IBPM), Rome, Italy.,Center for Human Technologies, Istituto Italiano di Tecnologia, Genova, Italy.,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| |
Collapse
|
43
|
p53 Activates the Long Noncoding RNA Pvt1b to Inhibit Myc and Suppress Tumorigenesis. Mol Cell 2020; 77:761-774.e8. [PMID: 31973890 DOI: 10.1016/j.molcel.2019.12.014] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/20/2019] [Accepted: 12/18/2019] [Indexed: 01/12/2023]
Abstract
The tumor suppressor p53 transcriptionally activates target genes to suppress cellular proliferation during stress. p53 has also been implicated in the repression of the proto-oncogene Myc, but the mechanism has remained unclear. Here, we identify Pvt1b, a p53-dependent isoform of the long noncoding RNA (lncRNA) Pvt1, expressed 50 kb downstream of Myc, which becomes induced by DNA damage or oncogenic signaling and accumulates near its site of transcription. We show that production of the Pvt1b RNA is necessary and sufficient to suppress Myc transcription in cis without altering the chromatin organization of the locus. Inhibition of Pvt1b increases Myc levels and transcriptional activity and promotes cellular proliferation. Furthermore, Pvt1b loss accelerates tumor growth, but not tumor progression, in an autochthonous mouse model of lung cancer. These findings demonstrate that Pvt1b acts at the intersection of the p53 and Myc transcriptional networks to reinforce the anti-proliferative activities of p53.
Collapse
|
44
|
Ritter N, Ali T, Kopitchinski N, Schuster P, Beisaw A, Hendrix DA, Schulz MH, Müller-McNicoll M, Dimmeler S, Grote P. The lncRNA Locus Handsdown Regulates Cardiac Gene Programs and Is Essential for Early Mouse Development. Dev Cell 2019; 50:644-657.e8. [PMID: 31422919 DOI: 10.1016/j.devcel.2019.07.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 05/10/2019] [Accepted: 07/10/2019] [Indexed: 11/29/2022]
Abstract
Precisely controlled gene regulatory networks are required during embryonic development to give rise to various structures, including those of the cardiovascular system. Long non-coding RNA (lncRNA) loci are known to be important regulators of these genetic programs. We have identified a novel and essential lncRNA locus Handsdown (Hdn), active in early heart cells, and show by genetic inactivation that it is essential for murine development. Hdn displays haploinsufficiency for cardiac development as Hdn-heterozygous adult mice exhibit hyperplasia in the right ventricular wall. Transcriptional activity of the Hdn locus, independent of its RNA, suppresses its neighboring gene Hand2. We reveal a switch in a topologically associated domain in differentiation of the cardiac lineage, allowing the Hdn locus to directly interact with regulatory elements of the Hand2 locus.
Collapse
Affiliation(s)
- Nicole Ritter
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Tamer Ali
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Faculty of Science, Benha University, Benha 13518, Egypt
| | - Nina Kopitchinski
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Peggy Schuster
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Arica Beisaw
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
| | - David A Hendrix
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA; School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, USA
| | - Marcel H Schulz
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Center for Cardiovascular Regeneration (DZHK), Partner site Rhein-Main, 60590 Frankfurt am Main, Germany
| | - Michaela Müller-McNicoll
- RNA Regulation Group, Institute of Cell Biology and Neuroscience, Goethe University, Max-von-Laue-Strasse 13, 60438 Frankfurt am Main, Germany
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Center for Cardiovascular Regeneration (DZHK), Partner site Rhein-Main, 60590 Frankfurt am Main, Germany
| | - Phillip Grote
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
45
|
Gressel S, Schwalb B, Cramer P. The pause-initiation limit restricts transcription activation in human cells. Nat Commun 2019; 10:3603. [PMID: 31399571 PMCID: PMC6689055 DOI: 10.1038/s41467-019-11536-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 07/18/2019] [Indexed: 01/01/2023] Open
Abstract
Eukaryotic gene transcription is often controlled at the level of RNA polymerase II (Pol II) pausing in the promoter-proximal region. Pausing Pol II limits the frequency of transcription initiation ('pause-initiation limit'), predicting that the pause duration must be decreased for transcriptional activation. To test this prediction, we conduct a genome-wide kinetic analysis of the heat shock response in human cells. We show that the pause-initiation limit restricts transcriptional activation at most genes. Gene activation generally requires the activity of the P-TEFb kinase CDK9, which decreases the duration of Pol II pausing and thereby enables an increase in the productive initiation frequency. The transcription of enhancer elements is generally not pause limited and can be activated without CDK9 activity. Our results define the kinetics of Pol II transcriptional regulation in human cells at all gene classes during a natural transcription response.
Collapse
Affiliation(s)
- Saskia Gressel
- Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany
| | - Björn Schwalb
- Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany.
| | - Patrick Cramer
- Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
46
|
Differential Interleukin-2 Transcription Kinetics Render Mouse but Not Human T Cells Vulnerable to Splicing Inhibition Early after Activation. Mol Cell Biol 2019; 39:MCB.00035-19. [PMID: 31160491 DOI: 10.1128/mcb.00035-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/28/2019] [Indexed: 12/24/2022] Open
Abstract
T cells are nodal players in the adaptive immune response against pathogens and malignant cells. Alternative splicing plays a crucial role in T cell activation, which is analyzed mainly at later time points upon stimulation. Here we have discovered a 2-h time window early after stimulation where optimal splicing efficiency or, more generally, gene expression efficiency is crucial for successful T cell activation. Reducing the splicing efficiency at 4 to 6 h poststimulation significantly impaired murine T cell activation, which was dependent on the expression dynamics of the Egr1-Nab2-interleukin-2 (IL-2) pathway. This time window overlaps the time of peak IL-2 de novo transcription, which, we suggest, represents a permissive time window in which decreased splicing (or transcription) efficiency reduces mature IL-2 production, thereby hampering murine T cell activation. Notably, the distinct expression kinetics of the Egr1-Nab2-IL-2 pathway between mouse and human render human T cells refractory to this vulnerability. We propose that the rational temporal modulation of splicing or transcription during peak de novo expression of key effectors can be used to fine-tune stimulation-dependent biological outcomes. Our data also show that critical consideration is required when extrapolating mouse data to the human system in basic and translational research.
Collapse
|
47
|
Ang CE, Ma Q, Wapinski OL, Fan S, Flynn RA, Lee QY, Coe B, Onoguchi M, Olmos VH, Do BT, Dukes-Rimsky L, Xu J, Tanabe K, Wang L, Elling U, Penninger JM, Zhao Y, Qu K, Eichler EE, Srivastava A, Wernig M, Chang HY. The novel lncRNA lnc-NR2F1 is pro-neurogenic and mutated in human neurodevelopmental disorders. eLife 2019; 8:41770. [PMID: 30628890 PMCID: PMC6380841 DOI: 10.7554/elife.41770] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/07/2019] [Indexed: 12/25/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been shown to act as important cell biological regulators including cell fate decisions but are often ignored in human genetics. Combining differential lncRNA expression during neuronal lineage induction with copy number variation morbidity maps of a cohort of children with autism spectrum disorder/intellectual disability versus healthy controls revealed focal genomic mutations affecting several lncRNA candidate loci. Here we find that a t(5:12) chromosomal translocation in a family manifesting neurodevelopmental symptoms disrupts specifically lnc-NR2F1. We further show that lnc-NR2F1 is an evolutionarily conserved lncRNA functionally enhances induced neuronal cell maturation and directly occupies and regulates transcription of neuronal genes including autism-associated genes. Thus, integrating human genetics and functional testing in neuronal lineage induction is a promising approach for discovering candidate lncRNAs involved in neurodevelopmental diseases.
Collapse
Affiliation(s)
- Cheen Euong Ang
- Department of Pathology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, United States.,Department of Bioengineering, Stanford University, Stanford, United States
| | - Qing Ma
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, United States.,Department of Dermatology, Stanford University, Stanford, United States.,Department of Genetics, Stanford University, Stanford, United States
| | - Orly L Wapinski
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, United States.,Department of Dermatology, Stanford University, Stanford, United States.,Department of Genetics, Stanford University, Stanford, United States
| | - ShengHua Fan
- JC Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, United States
| | - Ryan A Flynn
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, United States.,Department of Dermatology, Stanford University, Stanford, United States.,Department of Genetics, Stanford University, Stanford, United States
| | - Qian Yi Lee
- Department of Pathology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, United States.,Department of Bioengineering, Stanford University, Stanford, United States
| | - Bradley Coe
- Department of Genome Sciences, Howard Hughes Medical Institute, University of Washington, Seattle, United States
| | - Masahiro Onoguchi
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, United States.,Department of Dermatology, Stanford University, Stanford, United States.,Department of Genetics, Stanford University, Stanford, United States
| | - Victor Hipolito Olmos
- Department of Pathology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, United States
| | - Brian T Do
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, United States
| | - Lynn Dukes-Rimsky
- JC Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, United States
| | - Jin Xu
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, United States
| | - Koji Tanabe
- Department of Pathology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, United States
| | - LiangJiang Wang
- Department of Genetics and Biochemistry, Clemson University, Clemson, United States
| | - Ulrich Elling
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna Biocenter, Vienna, Austria
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna Biocenter, Vienna, Austria
| | - Yang Zhao
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, United States
| | - Kun Qu
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, United States.,Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna Biocenter, Vienna, Austria
| | - Evan E Eichler
- Department of Genome Sciences, Howard Hughes Medical Institute, University of Washington, Seattle, United States
| | - Anand Srivastava
- JC Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, United States.,Department of Genetics and Biochemistry, Clemson University, Clemson, United States
| | - Marius Wernig
- Department of Pathology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, United States
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, United States
| |
Collapse
|
48
|
Ntini E, Louloupi A, Liz J, Muino JM, Marsico A, Ørom UAV. Long ncRNA A-ROD activates its target gene DKK1 at its release from chromatin. Nat Commun 2018; 9:1636. [PMID: 29691407 PMCID: PMC5915440 DOI: 10.1038/s41467-018-04100-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 04/04/2018] [Indexed: 12/20/2022] Open
Abstract
Long ncRNAs are often enriched in the nucleus and at chromatin, but whether their dissociation from chromatin is important for their role in transcription regulation is unclear. Here, we group long ncRNAs using epigenetic marks, expression and strength of chromosomal interactions; we find that long ncRNAs transcribed from loci engaged in strong long-range chromosomal interactions are less abundant at chromatin, suggesting the release from chromatin as a crucial functional aspect of long ncRNAs in transcription regulation of their target genes. To gain mechanistic insight into this, we functionally validate the long ncRNA A-ROD, which enhances DKK1 transcription via its nascent spliced released form. Our data provide evidence that the regulatory interaction requires dissociation of A-ROD from chromatin, with target specificity ensured within the pre-established chromosomal proximity. We propose that the post-transcriptional release of a subset of long ncRNAs from the chromatin-associated template plays an important role in their function as transcription regulators.
Collapse
Affiliation(s)
- Evgenia Ntini
- Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany.
| | - Annita Louloupi
- Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany.,Free University Berlin, 14195, Berlin, Germany
| | - Julia Liz
- Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | | | - Annalisa Marsico
- Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany.,Free University Berlin, 14195, Berlin, Germany
| | - Ulf Andersson Vang Ørom
- Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany. .,Institute for Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark.
| |
Collapse
|
49
|
Zinc finger protein 746 promotes colorectal cancer progression via c-Myc stability mediated by glycogen synthase kinase 3β and F-box and WD repeat domain-containing 7. Oncogene 2018; 37:3715-3728. [DOI: 10.1038/s41388-018-0225-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/30/2018] [Accepted: 02/13/2018] [Indexed: 12/26/2022]
|
50
|
Abstract
miRNA biogenesis is a multistep process starting with the cleavage of the primary miRNA transcript in the nucleus by the microprocessor complex. The pri-miRNA processing kinetics has a high impact on the final regulative role of the mature miRNAs on the expression of their target transcripts. Thus studying the in vivo kinetics of the miRNA biogenesis could give more insights into the contribution of each individual miRNA on regulation of gene expression. Here, we describe step by step a method to determine the processing kinetics of pri-miRNAs in vivo, using a pulse-chase approach that can be used in downstream applications such as qPCR or deep sequencing. We explain in detail the various aspects of this approach that can be applied to different mammalian cell types. The nature of this protocol allows the in vivo study of pri-miRNA processing kinetics in cells treated with different conditions, mutants, and/or cancer cell lines under physiological conditions.
Collapse
Affiliation(s)
- Annita Louloupi
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- Free University of Berlin, 14195, Berlin, Germany
| | | |
Collapse
|