1
|
Chen Q, Wang S, Zhang J, Xie M, Lu B, He J, Zhen Z, Li J, Zhu J, Li R, Li P, Wang H, Vakoc C, Roeder RG, Chen M. JMJD1C forms condensates to facilitate a RUNX1-dependent gene expression program shared by multiple types of AML cells. Protein Cell 2024:pwae059. [PMID: 39450904 DOI: 10.1093/procel/pwae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Indexed: 10/26/2024] Open
Abstract
JMJD1C, a member of the lysine demethylase 3 (KDM3) family, is universally required for the survival of several types of acute myeloid leukemia (AML) cells with different genetic mutations, representing a therapeutic opportunity with broad application. Yet how JMJD1C regulates the leukemic programs of various AML cells is largely unexplored. Here we show that JMJD1C interacts with the master hematopoietic transcription factor RUNX1, which thereby recruits JMJD1C to the genome to facilitate a RUNX1-driven transcriptional program that supports leukemic cell survival. The underlying mechanism hinges on the long N-terminal disordered region of JMJD1C, which harbors two inseparable abilities: condensate formation and direct interaction with RUNX1. This dual capability of JMJD1C may influence enhancer-promoter contacts crucial for the expression of key leukemic genes regulated by RUNX1. Our findings demonstrate a previously unappreciated role for the non-catalytic function of JMJD1C in transcriptional regulation, underlying a mechanism shared by different types of leukemias.
Collapse
Affiliation(s)
- Qian Chen
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Saisai Wang
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Juqing Zhang
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Min Xie
- School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Bin Lu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jie He
- Nuclear Radiation Injury Protection and Treatment Department, Navy Medical Center of People Liberation Army (PLA), Second Military Medical University (Naval Medical University), Shanghai 200052, China
| | - Zhuoran Zhen
- State Key Laboratory of Molecular Oncology, Tsinghua-Peking Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Jing Li
- Department of Precision Medicine, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Jiajun Zhu
- State Key Laboratory of Molecular Oncology, Tsinghua-Peking Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Rong Li
- Nuclear Radiation Injury Protection and Treatment Department, Navy Medical Center of People Liberation Army (PLA), Second Military Medical University (Naval Medical University), Shanghai 200052, China
| | - Pilong Li
- State Key Laboratory of Membrane Biology, Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haifeng Wang
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | | | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Mo Chen
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan 030607, China
| |
Collapse
|
2
|
Su X, Feng Y, Chen R, Duan S. CircR-loop: a novel RNA:DNA interaction on genome instability. Cell Mol Biol Lett 2024; 29:89. [PMID: 38877420 PMCID: PMC11177446 DOI: 10.1186/s11658-024-00606-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 06/05/2024] [Indexed: 06/16/2024] Open
Abstract
CircR-loop, a recently unearthed regulatory mechanism situated at the crossroads of circular RNA and DNA interactions, constitute a subset of R-loop. This circR-loop have emerged as a crucial player in pivotal regulatory functions within both animal and plant systems. The journey into the realm of circR-loop commenced with their discovery within the human mitochondrial genome, where they serve as critical directors of mitochondrial DNA replication. In the plant kingdom, circR-loop wield influence over processes such as alternative splicing and centromere organization, impacting the intricacies of floral development and genome stability, respectively. Their significance extends to the animal domain, where circR-loop has captured attention for their roles in cancer-related phenomena, exerting control over transcription, chromatin architecture, and orchestrating responses to DNA damage. Moreover, their involvement in nuclear export anomalies further underscores their prominence in cellular regulation. This article summarizes the important regulatory mechanisms and physiological roles of circR-loop in plants and animals, and offers a comprehensive exploration of the methodologies employed for the identification, characterization, and functional analysis of circR-loop, underscoring the pressing need for innovative approaches that can effectively distinguish them from their linear RNA counterparts while elucidating their precise functions. Lastly, the article sheds light on the challenges and opportunities that lie ahead in the field of circR-loop research, emphasizing the vital importance of continued investigations to uncover their regulatory roles and potential applications in the realm of biology. In summary, circR-loop represents a captivating and novel regulatory mechanism with broad-reaching implications spanning the realms of genetics, epigenetics, and disease biology. Their exploration opens new avenues for comprehending gene regulation and holds significant promise for future therapeutic interventions.
Collapse
Affiliation(s)
- Xinming Su
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Yaojie Feng
- Department of Nursing, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Ruixiu Chen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Bakr A, Corte GD, Veselinov O, Kelekçi S, Chen MJM, Lin YY, Sigismondo G, Iacovone M, Cross A, Syed R, Jeong Y, Sollier E, Liu CS, Lutsik P, Krijgsveld J, Weichenhan D, Plass C, Popanda O, Schmezer P. ARID1A regulates DNA repair through chromatin organization and its deficiency triggers DNA damage-mediated anti-tumor immune response. Nucleic Acids Res 2024; 52:5698-5719. [PMID: 38587186 PMCID: PMC11162808 DOI: 10.1093/nar/gkae233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/27/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024] Open
Abstract
AT-rich interaction domain protein 1A (ARID1A), a SWI/SNF chromatin remodeling complex subunit, is frequently mutated across various cancer entities. Loss of ARID1A leads to DNA repair defects. Here, we show that ARID1A plays epigenetic roles to promote both DNA double-strand breaks (DSBs) repair pathways, non-homologous end-joining (NHEJ) and homologous recombination (HR). ARID1A is accumulated at DSBs after DNA damage and regulates chromatin loops formation by recruiting RAD21 and CTCF to DSBs. Simultaneously, ARID1A facilitates transcription silencing at DSBs in transcriptionally active chromatin by recruiting HDAC1 and RSF1 to control the distribution of activating histone marks, chromatin accessibility, and eviction of RNAPII. ARID1A depletion resulted in enhanced accumulation of micronuclei, activation of cGAS-STING pathway, and an increased expression of immunomodulatory cytokines upon ionizing radiation. Furthermore, low ARID1A expression in cancer patients receiving radiotherapy was associated with higher infiltration of several immune cells. The high mutation rate of ARID1A in various cancer types highlights its clinical relevance as a promising biomarker that correlates with the level of immune regulatory cytokines and estimates the levels of tumor-infiltrating immune cells, which can predict the response to the combination of radio- and immunotherapy.
Collapse
Affiliation(s)
- Ali Bakr
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Giuditta Della Corte
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Olivera Veselinov
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Simge Kelekçi
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Mei-Ju May Chen
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Yu-Yu Lin
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Gianluca Sigismondo
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), INF581, 69120 Heidelberg, Germany
| | - Marika Iacovone
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Alice Cross
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Rabail Syed
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Yunhee Jeong
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Etienne Sollier
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Chun- Shan Liu
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Pavlo Lutsik
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), INF581, 69120 Heidelberg, Germany
- Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Dieter Weichenhan
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), INF280, 69120 Heidelberg, Germany
| | - Odilia Popanda
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Peter Schmezer
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
D'haene E, López-Soriano V, Martínez-García PM, Kalayanamontri S, Rey AD, Sousa-Ortega A, Naranjo S, Van de Sompele S, Vantomme L, Mahieu Q, Vergult S, Neto A, Gómez-Skarmeta JL, Martínez-Morales JR, Bauwens M, Tena JJ, De Baere E. Comparative 3D genome analysis between neural retina and retinal pigment epithelium reveals differential cis-regulatory interactions at retinal disease loci. Genome Biol 2024; 25:123. [PMID: 38760655 PMCID: PMC11100165 DOI: 10.1186/s13059-024-03250-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 04/17/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Vision depends on the interplay between photoreceptor cells of the neural retina and the underlying retinal pigment epithelium (RPE). Most genes involved in inherited retinal diseases display specific spatiotemporal expression within these interconnected retinal components through the local recruitment of cis-regulatory elements (CREs) in 3D nuclear space. RESULTS To understand the role of differential chromatin architecture in establishing tissue-specific expression at inherited retinal disease loci, we mapped genome-wide chromatin interactions using in situ Hi-C and H3K4me3 HiChIP on neural retina and RPE/choroid from human adult donor eyes. We observed chromatin looping between active promoters and 32,425 and 8060 candidate CREs in the neural retina and RPE/choroid, respectively. A comparative 3D genome analysis between these two retinal tissues revealed that 56% of 290 known inherited retinal disease genes were marked by differential chromatin interactions. One of these was ABCA4, which is implicated in the most common autosomal recessive inherited retinal disease. We zoomed in on retina- and RPE-specific cis-regulatory interactions at the ABCA4 locus using high-resolution UMI-4C. Integration with bulk and single-cell epigenomic datasets and in vivo enhancer assays in zebrafish revealed tissue-specific CREs interacting with ABCA4. CONCLUSIONS Through comparative 3D genome mapping, based on genome-wide, promoter-centric, and locus-specific assays of human neural retina and RPE, we have shown that gene regulation at key inherited retinal disease loci is likely mediated by tissue-specific chromatin interactions. These findings do not only provide insight into tissue-specific regulatory landscapes at retinal disease loci, but also delineate the search space for non-coding genomic variation underlying unsolved inherited retinal diseases.
Collapse
Affiliation(s)
- Eva D'haene
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
| | - Víctor López-Soriano
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Pedro Manuel Martínez-García
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, Sevilla, Spain
| | - Soraya Kalayanamontri
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, Sevilla, Spain
| | - Alfredo Dueñas Rey
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Ana Sousa-Ortega
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, Sevilla, Spain
| | - Silvia Naranjo
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, Sevilla, Spain
| | - Stijn Van de Sompele
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Lies Vantomme
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Quinten Mahieu
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Sarah Vergult
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Ana Neto
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, Sevilla, Spain
| | - José Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, Sevilla, Spain
| | - Juan Ramón Martínez-Morales
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, Sevilla, Spain.
| | - Miriam Bauwens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
| | - Juan Jesús Tena
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, Sevilla, Spain.
| | - Elfride De Baere
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
5
|
Chang LH, Ghosh S, Papale A, Luppino JM, Miranda M, Piras V, Degrouard J, Edouard J, Poncelet M, Lecouvreur N, Bloyer S, Leforestier A, Joyce EF, Holcman D, Noordermeer D. Multi-feature clustering of CTCF binding creates robustness for loop extrusion blocking and Topologically Associating Domain boundaries. Nat Commun 2023; 14:5615. [PMID: 37699887 PMCID: PMC10497529 DOI: 10.1038/s41467-023-41265-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023] Open
Abstract
Topologically Associating Domains (TADs) separate vertebrate genomes into insulated regulatory neighborhoods that focus genome-associated processes. TADs are formed by Cohesin-mediated loop extrusion, with many TAD boundaries consisting of clustered binding sites of the CTCF insulator protein. Here we determine how this clustering of CTCF binding contributes to the blocking of loop extrusion and the insulation between TADs. We identify enrichment of three features of CTCF binding at strong TAD boundaries, consisting of strongly bound and closely spaced CTCF binding peaks, with a further enrichment of DNA-binding motifs within these peaks. Using multi-contact Nano-C analysis in cells with normal and perturbed CTCF binding, we establish that individual CTCF binding sites contribute to the blocking of loop extrusion, but in an incomplete manner. When clustered, individual CTCF binding sites thus create a stepwise insulation between neighboring TADs. Based on these results, we propose a model whereby multiple instances of temporal loop extrusion blocking create strong insulation between TADs.
Collapse
Affiliation(s)
- Li-Hsin Chang
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, and National Institute of Health Research, Blood and Transplant Research Unit in Precision Cellular Therapeutics, OX3 9DS, Oxford, UK
| | - Sourav Ghosh
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
- Department of Pathology and Laboratory Medicine, Western University, N6A3K7, London, ON, Canada
| | - Andrea Papale
- École Normale Supérieure, IBENS, Université PSL, 75005, Paris, France
| | - Jennifer M Luppino
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mélanie Miranda
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Vincent Piras
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Jéril Degrouard
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides (LPS), 91405, Orsay, France
| | - Joanne Edouard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Mallory Poncelet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Nathan Lecouvreur
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Sébastien Bloyer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Amélie Leforestier
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides (LPS), 91405, Orsay, France
| | - Eric F Joyce
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Holcman
- École Normale Supérieure, IBENS, Université PSL, 75005, Paris, France
- Churchill College, University of Cambridge, CB3 0DS, Cambridge, UK
| | - Daan Noordermeer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| |
Collapse
|
6
|
The Drosophila Fab-7 boundary modulates Abd-B gene activity by guiding an inversion of collinear chromatin organization and alternate promoter use. Cell Rep 2023; 42:111967. [PMID: 36640345 DOI: 10.1016/j.celrep.2022.111967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/09/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
Hox genes encode transcription factors that specify segmental identities along the anteroposterior body axis. These genes are organized in clusters, where their order corresponds to their activity along the body axis, a feature known as collinearity. In Drosophila, the BX-C cluster contains the three most posterior Hox genes, where their collinear activation incorporates progressive changes in histone modifications, chromatin architecture, and use of boundary elements and cis-regulatory regions. To dissect functional hierarchies, we compare chromatin organization in cell lines and larvae, with a focus on the Abd-B gene. Our work establishes the importance of the Fab-7 boundary for insulation between 3D domains carrying different histone modifications. Interestingly, we detect a non-canonical inversion of collinear chromatin dynamics at Abd-B, with the domain of active histone modifications progressively decreasing in size. This dynamic chromatin organization differentially activates the alternative promoters of the Abd-B gene, thereby expanding the possibilities for fine-tuning of transcriptional output.
Collapse
|
7
|
Van de Sompele S, Small KW, Cicekdal MB, Soriano VL, D'haene E, Shaya FS, Agemy S, Van der Snickt T, Rey AD, Rosseel T, Van Heetvelde M, Vergult S, Balikova I, Bergen AA, Boon CJF, De Zaeytijd J, Inglehearn CF, Kousal B, Leroy BP, Rivolta C, Vaclavik V, van den Ende J, van Schooneveld MJ, Gómez-Skarmeta JL, Tena JJ, Martinez-Morales JR, Liskova P, Vleminckx K, De Baere E. Multi-omics approach dissects cis-regulatory mechanisms underlying North Carolina macular dystrophy, a retinal enhanceropathy. Am J Hum Genet 2022; 109:2029-2048. [PMID: 36243009 PMCID: PMC9674966 DOI: 10.1016/j.ajhg.2022.09.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/28/2022] [Indexed: 01/26/2023] Open
Abstract
North Carolina macular dystrophy (NCMD) is a rare autosomal-dominant disease affecting macular development. The disease is caused by non-coding single-nucleotide variants (SNVs) in two hotspot regions near PRDM13 and by duplications in two distinct chromosomal loci, overlapping DNase I hypersensitive sites near either PRDM13 or IRX1. To unravel the mechanisms by which these variants cause disease, we first established a genome-wide multi-omics retinal database, RegRet. Integration of UMI-4C profiles we generated on adult human retina then allowed fine-mapping of the interactions of the PRDM13 and IRX1 promoters and the identification of eighteen candidate cis-regulatory elements (cCREs), the activity of which was investigated by luciferase and Xenopus enhancer assays. Next, luciferase assays showed that the non-coding SNVs located in the two hotspot regions of PRDM13 affect cCRE activity, including two NCMD-associated non-coding SNVs that we identified herein. Interestingly, the cCRE containing one of these SNVs was shown to interact with the PRDM13 promoter, demonstrated in vivo activity in Xenopus, and is active at the developmental stage when progenitor cells of the central retina exit mitosis, suggesting that this region is a PRDM13 enhancer. Finally, mining of single-cell transcriptional data of embryonic and adult retina revealed the highest expression of PRDM13 and IRX1 when amacrine cells start to synapse with retinal ganglion cells, supporting the hypothesis that altered PRDM13 or IRX1 expression impairs interactions between these cells during retinogenesis. Overall, this study provides insight into the cis-regulatory mechanisms of NCMD and supports that this condition is a retinal enhanceropathy.
Collapse
Affiliation(s)
- Stijn Van de Sompele
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Kent W Small
- Macula and Retina Institute, Los Angeles and Glendale, California, USA
| | - Munevver Burcu Cicekdal
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Víctor López Soriano
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Eva D'haene
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Fadi S Shaya
- Macula and Retina Institute, Los Angeles and Glendale, California, USA
| | - Steven Agemy
- Department of Ophthalmology, SUNY Downstate Medical Center University, Brooklyn, New York, USA
| | - Thijs Van der Snickt
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Alfredo Dueñas Rey
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Toon Rosseel
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Mattias Van Heetvelde
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Sarah Vergult
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Irina Balikova
- Department of Ophthalmology, University Hospitals Leuven, Leuven, Belgium
| | - Arthur A Bergen
- Department of Human Genetics, Amsterdam UMC, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands; Queen Emma Centre of Precision Medicine, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands; Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Julie De Zaeytijd
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
| | - Chris F Inglehearn
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Bohdan Kousal
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Bart P Leroy
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium; Department of Head & Skin, Ghent University, Ghent, Belgium; Division of Ophthalmology & Center for Cellular & Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland; Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Veronika Vaclavik
- University of Lausanne, Jules-Gonin Eye Hospital, Lausanne, Switzerland
| | | | - Mary J van Schooneveld
- Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands; Bartiméus, Diagnostic Center for Complex Visual Disorders, Zeist, The Netherlands
| | - José Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, Sevilla, Spain
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, Sevilla, Spain
| | - Juan R Martinez-Morales
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, Sevilla, Spain
| | - Petra Liskova
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Kris Vleminckx
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Elfride De Baere
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
8
|
Deforzh E, Uhlmann EJ, Das E, Galitsyna A, Arora R, Saravanan H, Rabinovsky R, Wirawan AD, Teplyuk NM, El Fatimy R, Perumalla S, Jairam A, Wei Z, Mirny L, Krichevsky AM. Promoter and enhancer RNAs regulate chromatin reorganization and activation of miR-10b/HOXD locus, and neoplastic transformation in glioma. Mol Cell 2022; 82:1894-1908.e5. [PMID: 35390275 PMCID: PMC9271318 DOI: 10.1016/j.molcel.2022.03.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/27/2022] [Accepted: 03/10/2022] [Indexed: 01/06/2023]
Abstract
miR-10b is silenced in normal neuroglial cells of the brain but commonly activated in glioma, where it assumes an essential tumor-promoting role. We demonstrate that the entire miR-10b-hosting HOXD locus is activated in glioma via the cis-acting mechanism involving 3D chromatin reorganization and CTCF-cohesin-mediated looping. This mechanism requires two interacting lncRNAs, HOXD-AS2 and LINC01116, one associated with HOXD3/HOXD4/miR-10b promoter and another with the remote enhancer. Knockdown of either lncRNA in glioma cells alters CTCF and cohesin binding, abolishes chromatin looping, inhibits the expression of all genes within HOXD locus, and leads to glioma cell death. Conversely, in cortical astrocytes, enhancer activation is sufficient for HOXD/miR-10b locus reorganization, gene derepression, and neoplastic cell transformation. LINC01116 RNA is essential for this process. Our results demonstrate the interplay of two lncRNAs in the chromatin folding and concordant regulation of miR-10b and multiple HOXD genes normally silenced in astrocytes and triggering the neoplastic glial transformation.
Collapse
Affiliation(s)
- Evgeny Deforzh
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Erik J Uhlmann
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Eashita Das
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Aleksandra Galitsyna
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143026, Russia
| | - Ramil Arora
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Harini Saravanan
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rosalia Rabinovsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Aditya D Wirawan
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nadiya M Teplyuk
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rachid El Fatimy
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sucika Perumalla
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anirudh Jairam
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zhiyun Wei
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Leonid Mirny
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anna M Krichevsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Teo WW, Cao X, Wu CS, Tan HK, Zhou Q, Gao C, Vanuytsel K, Kumar SS, Murphy GJ, Yang H, Chai L, Tenen DG. Non-coding RNA LEVER sequestration of PRC2 can mediate long range gene regulation. Commun Biol 2022; 5:343. [PMID: 35411071 PMCID: PMC9001699 DOI: 10.1038/s42003-022-03250-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/09/2022] [Indexed: 11/20/2022] Open
Abstract
Polycomb Repressive Complex 2 (PRC2) is an epigenetic regulator required for gene silencing during development. Although PRC2 is a well-established RNA-binding complex, the biological function of PRC2-RNA interaction has been controversial. Here, we study the gene-regulatory role of the inhibitory PRC2-RNA interactions. We report a nuclear long non-coding RNA, LEVER, which mapped 236 kb upstream of the β-globin cluster as confirmed by Nanopore sequencing. LEVER RNA interacts with PRC2 in its nascent form, and this prevents the accumulation of the H3K27 repressive histone marks within LEVER locus. Interestingly, the accessible LEVER chromatin, in turn, suppresses the chromatin interactions between the ε-globin locus and β-globin locus control region (LCR), resulting in a repressive effect on ε-globin gene expression. Our findings validate that the nascent RNA-PRC2 interaction inhibits local PRC2 function in situ. More importantly, we demonstrate that such a local process can in turn regulate the expression of neighboring genes. Identification of a long non-coding RNA LEVER, that inhibits the Polycomb Repressive Complex 2 (PRC2) and controls nearby embryonic form of beta-globin gene, provides additional evidence for PRC2-RNA functional interaction.
Collapse
Affiliation(s)
- Wei Wen Teo
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Xinang Cao
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chan-Shuo Wu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Hong Kee Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,National University of Singapore, Graduate School for Integrative Sciences and Engineering, Singapore, Singapore
| | - Qiling Zhou
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Chong Gao
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Kim Vanuytsel
- Section of Hematology and Medical Oncology, School of Medicine, Boston University, Boston, MA, USA.,Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
| | - Sara S Kumar
- Section of Hematology and Medical Oncology, School of Medicine, Boston University, Boston, MA, USA.,Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
| | - George J Murphy
- Section of Hematology and Medical Oncology, School of Medicine, Boston University, Boston, MA, USA.,Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Li Chai
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
| | - Daniel G Tenen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore. .,Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA. .,Harvard Initiative for RNA Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
A fast Myosin super enhancer dictates muscle fiber phenotype through competitive interactions with Myosin genes. Nat Commun 2022; 13:1039. [PMID: 35210422 PMCID: PMC8873246 DOI: 10.1038/s41467-022-28666-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 02/04/2022] [Indexed: 12/15/2022] Open
Abstract
The contractile properties of adult myofibers are shaped by their Myosin heavy chain isoform content. Here, we identify by snATAC-seq a 42 kb super-enhancer at the locus regrouping the fast Myosin genes. By 4C-seq we show that active fast Myosin promoters interact with this super-enhancer by DNA looping, leading to the activation of a single promoter per nucleus. A rainbow mouse transgenic model of the locus including the super-enhancer recapitulates the endogenous spatio-temporal expression of adult fast Myosin genes. In situ deletion of the super-enhancer by CRISPR/Cas9 editing demonstrates its major role in the control of associated fast Myosin genes, and deletion of two fast Myosin genes at the locus reveals an active competition of the promoters for the shared super-enhancer. Last, by disrupting the organization of fast Myosin, we uncover positional heterogeneity within limb skeletal muscles that may underlie selective muscle susceptibility to damage in certain myopathies. The contractile properties of adult myofibers are shaped by their Myosin heavy chain isoform content. Here the authors show that a super enhancer controls the spatiotemporal expression of the genes at the fast myosin heavy chain locus by DNA looping and that this expression profile is recapitulated in a rainbow transgenic mouse model of the locus.
Collapse
|
11
|
Benbarche S, Lopez CK, Salataj E, Aid Z, Thirant C, Laiguillon MC, Lecourt S, Belloucif Y, Vaganay C, Antonini M, Hu J, da Silva Babinet A, Ndiaye-Lobry D, Pardieu B, Petit A, Puissant A, Chaumeil J, Mercher T, Lobry C. Screening of ETO2-GLIS2-induced Super Enhancers identifies targetable cooperative dependencies in acute megakaryoblastic leukemia. SCIENCE ADVANCES 2022; 8:eabg9455. [PMID: 35138899 PMCID: PMC8827662 DOI: 10.1126/sciadv.abg9455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Super Enhancers (SEs) are clusters of regulatory elements associated with cell identity and disease. However, whether these elements are induced by oncogenes and can regulate gene modules cooperating for cancer cell transformation or maintenance remains elusive. To address this question, we conducted a genome-wide CRISPRi-based screening of SEs in ETO2-GLIS2+ acute megakaryoblastic leukemia. This approach revealed SEs essential for leukemic cell growth and survival that are induced by ETO2-GLIS2 expression. In particular, we identified a de novo SE specific of this leukemia subtype and regulating expression of tyrosine kinase-associated receptors KIT and PDGFRA. Combined expression of these two receptors was required for leukemic cell growth, and CRISPRi-mediated inhibition of this SE or treatment with tyrosine kinase inhibitors impaired progression of leukemia in vivo in patient-derived xenografts experiments. Our results show that fusion oncogenes, such as ETO2-GLIS2, can induce activation of SEs regulating essential gene modules synergizing for leukemia progression.
Collapse
Affiliation(s)
- Salima Benbarche
- INSERM U1170, Gustave Roussy Cancer Center and Université Paris Saclay, Villejuif F-94800, France
| | - Cécile K. Lopez
- INSERM U1170, Gustave Roussy Cancer Center and Université Paris Saclay, Villejuif F-94800, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Paris F-75013, France
| | - Eralda Salataj
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris F-75014, France
| | - Zakia Aid
- INSERM U1170, Gustave Roussy Cancer Center and Université Paris Saclay, Villejuif F-94800, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Paris F-75013, France
| | - Cécile Thirant
- INSERM U1170, Gustave Roussy Cancer Center and Université Paris Saclay, Villejuif F-94800, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Paris F-75013, France
| | | | - Séverine Lecourt
- INSERM U1170, Gustave Roussy Cancer Center and Université Paris Saclay, Villejuif F-94800, France
| | - Yannis Belloucif
- INSERM U944, CNRS UMR7212, Institut de Recherche Saint Louis and Université de Paris, Paris F-75010, France
| | - Camille Vaganay
- INSERM U944, CNRS UMR7212, Institut de Recherche Saint Louis and Université de Paris, Paris F-75010, France
| | - Marion Antonini
- INSERM U1170, Gustave Roussy Cancer Center and Université Paris Saclay, Villejuif F-94800, France
| | - Jiang Hu
- INSERM U1170, Gustave Roussy Cancer Center and Université Paris Saclay, Villejuif F-94800, France
- INSERM U944, CNRS UMR7212, Institut de Recherche Saint Louis and Université de Paris, Paris F-75010, France
| | | | | | - Bryann Pardieu
- INSERM U944, CNRS UMR7212, Institut de Recherche Saint Louis and Université de Paris, Paris F-75010, France
| | - Arnaud Petit
- Hôpital Trousseau, Sorbonne Université, Assistance Publique - Hôpitaux de Paris CONECT-AML, Paris F-75012, France
| | - Alexandre Puissant
- INSERM U944, CNRS UMR7212, Institut de Recherche Saint Louis and Université de Paris, Paris F-75010, France
| | - Julie Chaumeil
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris F-75014, France
| | - Thomas Mercher
- INSERM U1170, Gustave Roussy Cancer Center and Université Paris Saclay, Villejuif F-94800, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Paris F-75013, France
- Corresponding author. (C.L.); (T.M.)
| | - Camille Lobry
- INSERM U1170, Gustave Roussy Cancer Center and Université Paris Saclay, Villejuif F-94800, France
- INSERM U944, CNRS UMR7212, Institut de Recherche Saint Louis and Université de Paris, Paris F-75010, France
- Corresponding author. (C.L.); (T.M.)
| |
Collapse
|
12
|
Miranda M, Noordermeer D, Moindrot B. Detection of Allele-Specific 3D Chromatin Interactions Using High-Resolution In-Nucleus 4C-seq. Methods Mol Biol 2022; 2532:15-33. [PMID: 35867243 DOI: 10.1007/978-1-0716-2497-5_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chromosome conformation capture techniques are a set of methods used to determine 3D genome organization through the capture and identification of physical contacts between pairs of genomic loci. Among them, 4C-seq (circular chromosome conformation capture coupled to high-throughput sequencing) allows for the identification and quantification of the sequences interacting with a preselected locus of interest. 4C-seq has been widely used in the literature, mainly to study chromatin loops between enhancers and promoters or between CTCF binding sites and to identify chromatin domain boundaries. As 3D-contacts may be established in an allele-specific manner, we describe an up-to-date allele-specific 4C-seq protocol, starting from the selection of allele-specific viewpoints to Illumina sequencing. This protocol has mainly been optimized for cultured mammalian cells, but can be adapted for other cell types with relatively minor changes in initial steps.
Collapse
Affiliation(s)
- Mélanie Miranda
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Daan Noordermeer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
| | - Benoit Moindrot
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
| |
Collapse
|
13
|
Kyryachenko S, Georges A, Yu M, Barrandou T, Guo L, Bruneval P, Rubio T, Gronwald J, Baraki H, Kutschka I, Aras KK, Efimov IR, Norris RA, Voigt N, Bouatia-Naji N. Chromatin Accessibility of Human Mitral Valves and Functional Assessment of MVP Risk Loci. Circ Res 2021; 128:e84-e101. [PMID: 33508947 PMCID: PMC8316483 DOI: 10.1161/circresaha.120.317581] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 01/28/2021] [Indexed: 12/07/2022]
Abstract
RATIONALE Mitral valve prolapse (MVP) is a common valvopathy that leads to mitral insufficiency, heart failure, and sudden death. Functional genomic studies in mitral valves are needed to better characterize MVP-associated variants and target genes. OBJECTIVE To establish the chromatin accessibility profiles and assess functionality of variants and narrow down target genes at MVP loci. METHODS AND RESULTS We mapped the open chromatin regions in nuclei from 11 human pathogenic and 7 nonpathogenic mitral valves by an assay for transposase-accessible chromatin with high-throughput sequencing. Open chromatin peaks were globally similar between pathogenic and nonpathogenic valves. Compared with the heart tissue and cardiac fibroblasts, we found that MV-specific assay for transposase-accessible chromatin with high-throughput sequencing peaks are enriched near genes involved in extracellular matrix organization, chondrocyte differentiation, and connective tissue development. One of the most enriched motifs in MV-specific open chromatin peaks was for the nuclear factor of activated T cells family of TFs (transcription factors) involved in valve endocardial and interstitial cell formation. We also found that MVP-associated variants were significantly enriched (P<0.05) in mitral valve open chromatin peaks. Integration of the assay for transposase-accessible chromatin with high-throughput sequencing data with risk loci, extensive functional annotation, and gene reporter assay suggest plausible causal variants for rs2641440 at the SMG6/SRR locus and rs6723013 at the IGFBP2/IGFBP5/TNS1 locus. CRISPR-Cas9 deletion of the sequence including rs6723013 in human fibroblasts correlated with increased expression only for TNS1. Circular chromatin conformation capture followed by high-throughput sequencing experiments provided evidence for several target genes, including SRR, HIC1, and DPH1 at the SMG6/SRR locus and further supported TNS1 as the most likely target gene on chromosome 2. CONCLUSIONS Here, we describe unprecedented genome-wide open chromatin profiles from human pathogenic and nonpathogenic MVs and report specific gene regulation profiles, compared with the heart. We also report in vitro functional evidence for potential causal variants and target genes at MVP risk loci involving established and new biological mechanisms. Graphic Abstract: A graphic abstract is available for this article.
Collapse
Affiliation(s)
| | | | - Mengyao Yu
- Université de Paris, PARCC, Inserm, Paris,
France
| | | | - Lilong Guo
- Department of Regenerative Medicine and Cell Biology,
Medical University of South Carolina, Charleston, SC, USA
- Department of Medicine, Medical University of South
Carolina, Charleston, SC, USA
| | | | - Tony Rubio
- Institute of Pharmacology and Toxicology, University
Medical Center Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner
Site Göttingen, Germany
| | - Judith Gronwald
- Institute of Pharmacology and Toxicology, University
Medical Center Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner
Site Göttingen, Germany
| | - Hassina Baraki
- DZHK (German Center for Cardiovascular Research), Partner
Site Göttingen, Germany
- Department of Thoracic and Cardiovascular Surgery,
University Medical Center, Göttingen, Germany
| | - Ingo Kutschka
- DZHK (German Center for Cardiovascular Research), Partner
Site Göttingen, Germany
- Department of Thoracic and Cardiovascular Surgery,
University Medical Center, Göttingen, Germany
| | - Kedar K. Aras
- Department of Biomedical Engineering, George Washington
University, Washington, DC, USA
| | - Igor R. Efimov
- Department of Biomedical Engineering, George Washington
University, Washington, DC, USA
| | - Russel A. Norris
- Department of Regenerative Medicine and Cell Biology,
Medical University of South Carolina, Charleston, SC, USA
- Department of Medicine, Medical University of South
Carolina, Charleston, SC, USA
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University
Medical Center Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner
Site Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from
Molecular Machines to Networks of Excitable Cells (MBExC), University of
Göttingen, Germany
| | | |
Collapse
|
14
|
Arnould C, Rocher V, Finoux AL, Clouaire T, Li K, Zhou F, Caron P, Mangeot PE, Ricci EP, Mourad R, Haber JE, Noordermeer D, Legube G. Loop extrusion as a mechanism for formation of DNA damage repair foci. Nature 2021; 590:660-665. [PMID: 33597753 PMCID: PMC7116834 DOI: 10.1038/s41586-021-03193-z] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 01/06/2021] [Indexed: 12/26/2022]
Abstract
The repair of DNA double-strand breaks (DSBs) is essential for safeguarding genome integrity. When a DSB forms, the PI3K-related ATM kinase rapidly triggers the establishment of megabase-sized, chromatin domains decorated with phosphorylated histone H2AX (γH2AX), which act as seeds for the formation of DNA-damage response foci1. It is unclear how these foci are rapidly assembled to establish a 'repair-prone' environment within the nucleus. Topologically associating domains are a key feature of 3D genome organization that compartmentalize transcription and replication, but little is known about their contribution to DNA repair processes2,3. Here we show that topologically associating domains are functional units of the DNA damage response, and are instrumental for the correct establishment of γH2AX-53BP1 chromatin domains in a manner that involves one-sided cohesin-mediated loop extrusion on both sides of the DSB. We propose a model in which H2AX-containing nucleosomes are rapidly phosphorylated as they actively pass by DSB-anchored cohesin. Our work highlights the importance of chromosome conformation in the maintenance of genome integrity and demonstrates the establishment of a chromatin modification by loop extrusion.
Collapse
Affiliation(s)
- Coline Arnould
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), UPS, CNRS, Toulouse, France
| | - Vincent Rocher
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), UPS, CNRS, Toulouse, France
| | - Anne-Laure Finoux
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), UPS, CNRS, Toulouse, France
| | - Thomas Clouaire
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), UPS, CNRS, Toulouse, France
| | - Kevin Li
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, MA, USA
| | - Felix Zhou
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, MA, USA
| | - Pierre Caron
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), UPS, CNRS, Toulouse, France
| | - Philippe E Mangeot
- CIRI - International Center for Infectiology Research, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Emiliano P Ricci
- Laboratoire de Biologie et Modélisation de la Cellule, Université de Lyon, INSERM U1293, CNRS UMR 5239, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Raphaël Mourad
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), UPS, CNRS, Toulouse, France
| | - James E Haber
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, MA, USA
| | - Daan Noordermeer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Gaëlle Legube
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), UPS, CNRS, Toulouse, France.
| |
Collapse
|
15
|
Yue J, Dai Q, Hao S, Zhu S, Liu X, Tang Z, Li M, Fang H, Lin C, Luo Z. Suppression of the NTS-CPS1 regulatory axis by AFF1 in lung adenocarcinoma cells. J Biol Chem 2021; 296:100319. [PMID: 33493519 PMCID: PMC7949158 DOI: 10.1016/j.jbc.2021.100319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/05/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
Upregulation of the neuropeptide neurotensin (NTS) in a subgroup of lung cancers has been linked to poor prognosis. However, the regulatory pathway centered on NTS in lung cancer remains unclear. Here we identified the NTS-specific enhancer in lung adenocarcinoma cells. The AF4/FMR2 (AFF) family protein AFF1 occupies the NTS enhancer and inhibits NTS transcription. Clustering analysis of lung adenocarcinoma gene expression data demonstrated that NTS expression is highly positively correlated with the expression of the oncogenic factor CPS1. Detailed analyses demonstrated that the IL6 pathway antagonizes NTS in regulating CPS1. Thus, our analyses revealed a novel NTS-centered regulatory axis, consisting of AFF1 as a master transcription suppressor and IL6 as an antagonist in lung adenocarcinoma cells.
Collapse
Affiliation(s)
- Junjie Yue
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Qian Dai
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Shaohua Hao
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Shiqi Zhu
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Xiaoxu Liu
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Zhiqun Tang
- Singapore Eye research Institute, Singapore, Singapore
| | - Meng Li
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Haitong Fang
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Chengqi Lin
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| | - Zhuojuan Luo
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| |
Collapse
|
16
|
Hou G, Harley ITW, Lu X, Zhou T, Xu N, Yao C, Qin Y, Ouyang Y, Ma J, Zhu X, Yu X, Xu H, Dai D, Ding H, Yin Z, Ye Z, Deng J, Zhou M, Tang Y, Namjou B, Guo Y, Weirauch MT, Kottyan LC, Harley JB, Shen N. SLE non-coding genetic risk variant determines the epigenetic dysfunction of an immune cell specific enhancer that controls disease-critical microRNA expression. Nat Commun 2021; 12:135. [PMID: 33420081 PMCID: PMC7794586 DOI: 10.1038/s41467-020-20460-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Since most variants that impact polygenic disease phenotypes localize to non-coding genomic regions, understanding the consequences of regulatory element variants will advance understanding of human disease mechanisms. Here, we report that the systemic lupus erythematosus (SLE) risk variant rs2431697 as likely causal for SLE through disruption of a regulatory element, modulating miR-146a expression. Using epigenomic analysis, genome-editing and 3D chromatin structure analysis, we show that rs2431697 tags a cell-type dependent distal enhancer specific for miR-146a that physically interacts with the miR-146a promoter. NF-kB binds the disease protective allele in a sequence-specific manner, increasing expression of this immunoregulatory microRNA. Finally, CRISPR activation-based modulation of this enhancer in the PBMCs of SLE patients attenuates type I interferon pathway activation by increasing miR-146a expression. Our work provides a strategy to define non-coding RNA functional regulatory elements using disease-associated variants and provides mechanistic links between autoimmune disease risk genetic variation and disease etiology.
Collapse
Affiliation(s)
- Guojun Hou
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200032, China
- Shanghai Institute of Rheumatology, China-Australia Centre for Personalized Immunology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001, China
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518040, China
| | - Isaac T W Harley
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
- Division of Rheumatology, School of Medicine, University of Colorado, Aurora, Colorado, 80045, USA
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, Colorado, 80045, USA
| | - Xiaoming Lu
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - Tian Zhou
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001, China
| | - Ning Xu
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001, China
| | - Chao Yao
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences(SIBS), University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200031, China
| | - Yuting Qin
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001, China
| | - Ye Ouyang
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001, China
| | - Jianyang Ma
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001, China
| | - Xinyi Zhu
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001, China
| | - Xiang Yu
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001, China
| | - Hong Xu
- Department of Obstetrics and Gynecology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200127, China
- Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200127, China
| | - Dai Dai
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001, China
| | - Huihua Ding
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001, China
| | - Zhihua Yin
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518040, China
| | - Zhizhong Ye
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518040, China
| | - Jun Deng
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001, China
| | - Mi Zhou
- Sheng Yushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University (SJTU), Shanghai, 200240, China
| | - Yuanjia Tang
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001, China
| | - Bahram Namjou
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - Ya Guo
- Sheng Yushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University (SJTU), Shanghai, 200240, China
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45229, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - Leah C Kottyan
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45229, USA
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - John B Harley
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
- US Department of Veterans Affairs Medical Center, Cincinnati, Ohio, 45229, USA
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200032, China.
- Shanghai Institute of Rheumatology, China-Australia Centre for Personalized Immunology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200001, China.
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518040, China.
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45229, USA.
| |
Collapse
|
17
|
Llères D, Moindrot B, Pathak R, Piras V, Matelot M, Pignard B, Marchand A, Poncelet M, Perrin A, Tellier V, Feil R, Noordermeer D. CTCF modulates allele-specific sub-TAD organization and imprinted gene activity at the mouse Dlk1-Dio3 and Igf2-H19 domains. Genome Biol 2019; 20:272. [PMID: 31831055 PMCID: PMC6909504 DOI: 10.1186/s13059-019-1896-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Genomic imprinting is essential for mammalian development and provides a unique paradigm to explore intra-cellular differences in chromatin configuration. So far, the detailed allele-specific chromatin organization of imprinted gene domains has mostly been lacking. Here, we explored the chromatin structure of the two conserved imprinted domains controlled by paternal DNA methylation imprints-the Igf2-H19 and Dlk1-Dio3 domains-and assessed the involvement of the insulator protein CTCF in mouse cells. RESULTS Both imprinted domains are located within overarching topologically associating domains (TADs) that are similar on both parental chromosomes. At each domain, a single differentially methylated region is bound by CTCF on the maternal chromosome only, in addition to multiple instances of bi-allelic CTCF binding. Combinations of allelic 4C-seq and DNA-FISH revealed that bi-allelic CTCF binding alone, on the paternal chromosome, correlates with a first level of sub-TAD structure. On the maternal chromosome, additional CTCF binding at the differentially methylated region adds a further layer of sub-TAD organization, which essentially hijacks the existing paternal-specific sub-TAD organization. Perturbation of maternal-specific CTCF binding site at the Dlk1-Dio3 locus, using genome editing, results in perturbed sub-TAD organization and bi-allelic Dlk1 activation during differentiation. CONCLUSIONS Maternal allele-specific CTCF binding at the imprinted Igf2-H19 and the Dlk1-Dio3 domains adds an additional layer of sub-TAD organization, on top of an existing three-dimensional configuration and prior to imprinted activation of protein-coding genes. We speculate that this allele-specific sub-TAD organization provides an instructive or permissive context for imprinted gene activation during development.
Collapse
Affiliation(s)
- David Llères
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France
| | - Benoît Moindrot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-sud and University Paris-Saclay, Gif-sur-Yvette, France
| | - Rakesh Pathak
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France
| | - Vincent Piras
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-sud and University Paris-Saclay, Gif-sur-Yvette, France
| | - Mélody Matelot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-sud and University Paris-Saclay, Gif-sur-Yvette, France
| | - Benoît Pignard
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France
| | - Alice Marchand
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France
| | - Mallory Poncelet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-sud and University Paris-Saclay, Gif-sur-Yvette, France
| | - Aurélien Perrin
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France
| | - Virgile Tellier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-sud and University Paris-Saclay, Gif-sur-Yvette, France
| | - Robert Feil
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France.
| | - Daan Noordermeer
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-sud and University Paris-Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
18
|
Fallatah W, De Silva IW, Verbeck GF, Jagadeeswaran P. Generation of transgenic zebrafish with 2 populations of RFP- and GFP-labeled thrombocytes: analysis of their lipids. Blood Adv 2019; 3:1406-1415. [PMID: 31053568 PMCID: PMC6517667 DOI: 10.1182/bloodadvances.2018023960] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 03/16/2019] [Indexed: 11/20/2022] Open
Abstract
Zebrafish thrombocytes are similar to mammalian platelets. Mammals have young platelets (also called reticulated platelets) and mature platelets. Likewise, zebrafish have 2 populations of thrombocytes; one is DiI-C18 (DiI)+ (DP), and the other is DiI- (DN). However, the mechanism of selective thrombocyte labeling by DiI is unknown. Furthermore, there is no transgenic zebrafish line where DP and DN thrombocytes are differentially labeled with fluorescent proteins. In this study, we found that Glo fish, in which the myosin light chain 2 promoter drives the rfp gene, have a population of thrombocytes that are red fluorescent protein (RFP) labeled. We also generated transgenic GloFli fish in which DP and DN thrombocytes are labeled with RFP and green fluorescent protein (GFP), respectively. Single-cell lipid analysis showed a twofold increase in phosphatidylethanolamine (PE) and a twofold decrease in phosphatidylcholine (PC) in RFP+ thrombocytes compared with GFP+ thrombocytes, suggesting that lipid composition may be important for DiI differential labeling. Therefore, we tested liposomes prepared with different ratios of PC and PE and observed that liposomes prepared with higher amounts of PE favor DiI labeling, whereas the PC concentration had a modest effect. In liposomes prepared using only PE or PC, increased concentrations of PE resulted in increased DiI binding. These results suggest that because RFP+ thrombocytes have higher PE concentrations, DiI may bind to them efficiently, thus explaining the selective labeling of thrombocytes by DiI. This work also provides GloFli fish that should be useful in understanding the mechanism of thrombocyte maturation.
Collapse
Affiliation(s)
| | | | - Guido F Verbeck
- Department of Chemistry, University of North Texas, Denton, TX
| | | |
Collapse
|
19
|
Greenberg M, Teissandier A, Walter M, Noordermeer D, Bourc'his D. Dynamic enhancer partitioning instructs activation of a growth-related gene during exit from naïve pluripotency. eLife 2019; 8:44057. [PMID: 30990414 PMCID: PMC6488298 DOI: 10.7554/elife.44057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/15/2019] [Indexed: 12/29/2022] Open
Abstract
During early mammalian development, the chromatin landscape undergoes profound transitions. The Zdbf2 gene—involved in growth control—provides a valuable model to study this window: upon exit from naïve pluripotency and prior to tissue differentiation, it undergoes a switch from a distal to a proximal promoter usage, accompanied by a switch from polycomb to DNA methylation occupancy. Using a mouse embryonic stem cell (ESC) system to mimic this period, we show here that four enhancers contribute to the Zdbf2 promoter switch, concomitantly with dynamic changes in chromatin architecture. In ESCs, the locus is partitioned to facilitate enhancer contacts with the distal Zdbf2 promoter. Relieving the partition enhances proximal Zdbf2 promoter activity, as observed during differentiation or with genetic mutants. Importantly, we show that 3D regulation occurs upstream of the polycomb and DNA methylation pathways. Our study reveals the importance of multi-layered regulatory frameworks to ensure proper spatio-temporal activation of developmentally important genes.
Collapse
Affiliation(s)
- Maxim Greenberg
- Institut Curie, PSL Research University, INSERM, CNRS, Paris, France
| | | | - Marius Walter
- Institut Curie, PSL Research University, INSERM, CNRS, Paris, France
| | - Daan Noordermeer
- Institute for Integrative Biology of the Cell (I2BC), Université Paris Sud, Université Paris-Saclay, CEA, CNRS, Paris, France
| | - Deborah Bourc'his
- Institut Curie, PSL Research University, INSERM, CNRS, Paris, France
| |
Collapse
|
20
|
Brettmann EA, Oh IY, de Guzman Strong C. High-throughput Identification of Gene Regulatory Sequences Using Next-generation Sequencing of Circular Chromosome Conformation Capture (4C-seq). J Vis Exp 2018. [PMID: 30346381 DOI: 10.3791/58030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The identification of regulatory elements for a given target gene poses a significant technical challenge owing to the variability in the positioning and effect sizes of regulatory elements to a target gene. Some progress has been made with the bioinformatic prediction of the existence and function of proximal epigenetic modifications associated with activated gene expression using conserved transcription factor binding sites. Chromatin conformation capture studies have revolutionized our ability to discover physical chromatin contacts between sequences and even within an entire genome. Circular chromatin conformation capture coupled with next-generation sequencing (4C-seq), in particular, is designed to discover all possible physical chromatin interactions for a given sequence of interest (viewpoint), such as a target gene or a regulatory enhancer. Current 4C-seq strategies directly sequence from within the viewpoint but require numerous and diverse viewpoints to be simultaneously sequenced to avoid the technical challenges of uniform base calling (imaging) with next generation sequencing platforms. This volume of experiments may not be practical for many laboratories. Here, we report a modified approach to the 4C-seq protocol that incorporates both an additional restriction enzyme digest and qPCR-based amplification steps that are designed to facilitate a greater capture of diverse sequence reads and mitigate the potential for PCR bias, respectively. Our modified 4C method is amenable to the standard molecular biology lab for assessing chromatin architecture.
Collapse
Affiliation(s)
- Erin A Brettmann
- Division of Dermatology, Center for Pharmacogenomics, Center for the Study of Itch, Department of Medicine, Washington University School of Medicine
| | - Inez Y Oh
- Division of Dermatology, Center for Pharmacogenomics, Center for the Study of Itch, Department of Medicine, Washington University School of Medicine
| | - Cristina de Guzman Strong
- Division of Dermatology, Center for Pharmacogenomics, Center for the Study of Itch, Department of Medicine, Washington University School of Medicine;
| |
Collapse
|
21
|
Levchenko A, Kanapin A, Samsonova A, Gainetdinov RR. Human Accelerated Regions and Other Human-Specific Sequence Variations in the Context of Evolution and Their Relevance for Brain Development. Genome Biol Evol 2018; 10:166-188. [PMID: 29149249 PMCID: PMC5767953 DOI: 10.1093/gbe/evx240] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2017] [Indexed: 12/24/2022] Open
Abstract
The review discusses, in a format of a timeline, the studies of different types of genetic variants, present in Homo sapiens, but absent in all other primate, mammalian, or vertebrate species, tested so far. The main characteristic of these variants is that they are found in regions of high evolutionary conservation. These sequence variations include single nucleotide substitutions (called human accelerated regions), deletions, and segmental duplications. The rationale for finding such variations in the human genome is that they could be responsible for traits, specific to our species, of which the human brain is the most remarkable. As became obvious, the vast majority of human-specific single nucleotide substitutions are found in noncoding, likely regulatory regions. A number of genes, associated with these human-specific alleles, often through novel enhancer activity, were in fact shown to be implicated in human-specific development of certain brain areas, including the prefrontal cortex. Human-specific deletions may remove regulatory sequences, such as enhancers. Segmental duplications, because of their large size, create new coding sequences, like new functional paralogs. Further functional study of these variants will shed light on evolution of our species, as well as on the etiology of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Anastasia Levchenko
- Institute of Translational Biomedicine, Saint Petersburg State University, Russia
| | - Alexander Kanapin
- Institute of Translational Biomedicine, Saint Petersburg State University, Russia
- Department of Oncology, University of Oxford, United Kingdom
| | - Anastasia Samsonova
- Institute of Translational Biomedicine, Saint Petersburg State University, Russia
- Department of Oncology, University of Oxford, United Kingdom
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia
| |
Collapse
|
22
|
Krox20 hindbrain regulation incorporates multiple modes of cooperation between cis-acting elements. PLoS Genet 2017; 13:e1006903. [PMID: 28749941 PMCID: PMC5549768 DOI: 10.1371/journal.pgen.1006903] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/08/2017] [Accepted: 07/03/2017] [Indexed: 11/19/2022] Open
Abstract
Developmental genes can harbour multiple transcriptional enhancers that act simultaneously or in succession to achieve robust and precise spatiotemporal expression. However, the mechanisms underlying cooperation between cis-acting elements are poorly documented, notably in vertebrates. The mouse gene Krox20 encodes a transcription factor required for the specification of two segments (rhombomeres) of the developing hindbrain. In rhombomere 3, Krox20 is subject to direct positive feedback governed by an autoregulatory enhancer, element A. In contrast, a second enhancer, element C, distant by 70 kb, is active from the initiation of transcription independent of the presence of the KROX20 protein. Here, using both enhancer knock-outs and investigations of chromatin organisation, we show that element C possesses a dual activity: besides its classical enhancer function, it is also permanently required in cis to potentiate the autoregulatory activity of element A, by increasing its chromatin accessibility. This work uncovers a novel, asymmetrical, long-range mode of cooperation between cis-acting elements that might be essential to avoid promiscuous activation of positive autoregulatory elements. The formation of multicellular organisms from the egg to the adult stage is largely under genetic control. The activation of specific genes is governed by regulatory DNA sequences present nearby on the chromosome. Most of these sequences promote activation and are called enhancers. In this paper, we study two enhancers governing the expression of a gene involved in the formation of the posterior brain in vertebrates. One of these enhancers is involved in a positive feedback loop: it is itself activated by the protein product of the gene that it regulates. The other enhancer was thought to be only involved in the initial accumulation of the protein, necessary for the subsequent activation of the feedback loop. Here we show that the second enhancer directly cooperates with the autoregulatory enhancer to increase its accessibility and its activity. Our work uncovers a novel, long-range mode of cooperation between enhancers that restricts the domain of action of autoregulatory enhancers within embryos and might be essential to avoid their inappropriate activation.
Collapse
|
23
|
Frank-Bertoncelj M, Klein K, Gay S. Interplay between genetic and epigenetic mechanisms in rheumatoid arthritis. Epigenomics 2017; 9:493-504. [PMID: 28322583 DOI: 10.2217/epi-2016-0142] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Genetic and environmental factors contribute to the risk for rheumatoid arthritis (RA), with epigenetics serving as a possible interface through which risk factors contribute to RA. High-throughput technologies for interrogating genome and epigenome, and the availability of genetic and epigenetic datasets across a diversity of cell types, enable the identification of candidate causal genetic variants for RA to study their function in core RA processes. To date, RA risk variants were studied in the immune cells but not joint resident cells, for example, synovial fibroblasts. Synovial fibroblasts from different joints are distinct, anatomically specialized cells, defined by joint-specific transcriptomes, epigenomes and phenotypes. Cell type-specific analysis of epigenetic changes, together with genetic fine mapping and interrogation of chromatin 3D interactions may identify new disease relevant pathways, potential therapeutic targets and biomarkers for RA progression or therapy response.
Collapse
Affiliation(s)
| | - Kerstin Klein
- Center of Experimental Rheumatology, University Hospital Zurich, Switzerland
| | - Steffen Gay
- Center of Experimental Rheumatology, University Hospital Zurich, Switzerland
| |
Collapse
|