1
|
Rieger J, Fitz M, Fischer SM, Wallmeroth N, Flores-Romero H, Fischer NM, Brand LH, García-Sáez AJ, Berendzen KW, Mira-Rodado V. Exploring the Binding Affinity of the ARR2 GARP DNA Binding Domain via Comparative Methods. Genes (Basel) 2023; 14:1638. [PMID: 37628689 PMCID: PMC10454580 DOI: 10.3390/genes14081638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Plants have evolved signaling mechanisms such as the multi-step phosphorelay (MSP) to respond to different internal and external stimuli. MSP responses often result in gene transcription regulation that is modulated through transcription factors such as B-type Arabidopsis response regulator (ARR) proteins. Among these proteins, ARR2 is a key component that is expressed ubiquitously and is involved in many aspects of plant development. Although it has been noted that B-type ARRs bind to their cognate genes through a DNA-binding domain termed the GARP domain, little is known about the structure and function of this type of DNA-binding domain; thus, how ARRs bind to DNA at a structural level is still poorly understood. In order to understand how the MSP functions in planta, it is crucial to unravel both the kinetics as well as the structural identity of the components involved in such interactions. For this reason, this work focusses on resolving how the GARP domain of ARR2 (GARP2) binds to the promoter region of ARR5, one of its native target genes in cytokinin signaling. We have established that GARP2 specifically binds to the ARR5 promoter with three different bi-molecular interaction systems-qDPI-ELISA, FCS, and MST-and we also determined the KD of this interaction. In addition, structural modeling of the GARP2 domain confirms that GARP2 entails a HTH motif, and that protein-DNA interaction most likely occurs via the α3-helix and the N-terminal arm of this domain since mutations in this region hinder ARR2's ability to activate transcription.
Collapse
Affiliation(s)
- Janine Rieger
- Center for Plant Molecular Biology (ZMBP), Tübingen University, 72076 Tübingen, Germany
| | - Michael Fitz
- Center for Plant Molecular Biology (ZMBP), Tübingen University, 72076 Tübingen, Germany
| | - Stefan Markus Fischer
- Center for Plant Molecular Biology (ZMBP), Tübingen University, 72076 Tübingen, Germany
| | - Niklas Wallmeroth
- Center for Plant Molecular Biology (ZMBP), Tübingen University, 72076 Tübingen, Germany
| | - Hector Flores-Romero
- Interfaculty Institute of Biochemistry (IFIB), Tübingen University, 72076 Tübingen, Germany
- CECAD Research Center, Institute of Genetics, Cologne University, 51069 Cologne, Germany
| | - Nina Monika Fischer
- Institute for Bioinformatics and Medical Informatics, Tübingen University, 72076 Tübingen, Germany
| | - Luise Helene Brand
- Center for Plant Molecular Biology (ZMBP), Tübingen University, 72076 Tübingen, Germany
| | - Ana J. García-Sáez
- Interfaculty Institute of Biochemistry (IFIB), Tübingen University, 72076 Tübingen, Germany
- CECAD Research Center, Institute of Genetics, Cologne University, 51069 Cologne, Germany
| | | | - Virtudes Mira-Rodado
- Center for Plant Molecular Biology (ZMBP), Tübingen University, 72076 Tübingen, Germany
| |
Collapse
|
2
|
Yasmeen E, Wang J, Riaz M, Zhang L, Zuo K. Designing artificial synthetic promoters for accurate, smart, and versatile gene expression in plants. PLANT COMMUNICATIONS 2023:100558. [PMID: 36760129 PMCID: PMC10363483 DOI: 10.1016/j.xplc.2023.100558] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
With the development of high-throughput biology techniques and artificial intelligence, it has become increasingly feasible to design and construct artificial biological parts, modules, circuits, and even whole systems. To overcome the limitations of native promoters in controlling gene expression, artificial promoter design aims to synthesize short, inducible, and conditionally controlled promoters to coordinate the expression of multiple genes in diverse plant metabolic and signaling pathways. Synthetic promoters are versatile and can drive gene expression accurately with smart responses; they show potential for enhancing desirable traits in crops, thereby improving crop yield, nutritional quality, and food security. This review first illustrates the importance of synthetic promoters, then introduces promoter architecture and thoroughly summarizes advances in synthetic promoter construction. Restrictions to the development of synthetic promoters and future applications of such promoters in synthetic plant biology and crop improvement are also discussed.
Collapse
Affiliation(s)
- Erum Yasmeen
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jin Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muhammad Riaz
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lida Zhang
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kaijing Zuo
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
3
|
Iwasaki M, Kajiwara T, Yasui Y, Yoshitake Y, Miyazaki M, Kawamura S, Suetsugu N, Nishihama R, Yamaoka S, Wanke D, Hashimoto K, Kuchitsu K, Montgomery SA, Singh S, Tanizawa Y, Yagura M, Mochizuki T, Sakamoto M, Nakamura Y, Liu C, Berger F, Yamato KT, Bowman JL, Kohchi T. Identification of the sex-determining factor in the liverwort Marchantia polymorpha reveals unique evolution of sex chromosomes in a haploid system. Curr Biol 2021; 31:5522-5532.e7. [PMID: 34735792 PMCID: PMC8699743 DOI: 10.1016/j.cub.2021.10.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/02/2021] [Accepted: 10/08/2021] [Indexed: 12/18/2022]
Abstract
Sex determination is a central process for sexual reproduction and is often regulated by a sex determinant encoded on a sex chromosome. Rules that govern the evolution of sex chromosomes via specialization and degeneration following the evolution of a sex determinant have been well studied in diploid organisms. However, distinct predictions apply to sex chromosomes in organisms where sex is determined in the haploid phase of the life cycle: both sex chromosomes, female U and male V, are expected to maintain their gene functions, even though both are non-recombining. This is in contrast to the X-Y (or Z-W) asymmetry and Y (W) chromosome degeneration in XY (ZW) systems of diploids. Here, we provide evidence that sex chromosomes diverged early during the evolution of haploid liverworts and identify the sex determinant on the Marchantia polymorpha U chromosome. This gene, Feminizer, encodes a member of the plant-specific BASIC PENTACYSTEINE transcription factor family. It triggers female differentiation via regulation of the autosomal sex-determining locus of FEMALE GAMETOPHYTE MYB and SUPPRESSOR OF FEMINIZATION. Phylogenetic analyses of Feminizer and other sex chromosome genes indicate dimorphic sex chromosomes had already been established 430 mya in the ancestral liverwort. Feminizer also plays a role in reproductive induction that is shared with its gametolog on the V chromosome, suggesting an ancestral function, distinct from sex determination, was retained by the gametologs. This implies ancestral functions can be preserved after the acquisition of a sex determination mechanism during the evolution of a dominant haploid sex chromosome system.
Collapse
Affiliation(s)
- Miyuki Iwasaki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Tomoaki Kajiwara
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Yukiko Yasui
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | | | - Motoki Miyazaki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Shogo Kawamura
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Noriyuki Suetsugu
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Dierk Wanke
- Department Biologie I, Ludwig-Maximilians-University (LMU), München 80638, Germany
| | - Kenji Hashimoto
- Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Kazuyuki Kuchitsu
- Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Sean A Montgomery
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Shilpi Singh
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Yasuhiro Tanizawa
- National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
| | - Masaru Yagura
- National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
| | - Takako Mochizuki
- National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
| | - Mika Sakamoto
- National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
| | - Yasukazu Nakamura
- National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
| | - Chang Liu
- Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology (BOST), Kindai University, Kinokawa, Wakayama 649-6493, Japan
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia.
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
4
|
Rajeev L, Garber ME, Mukhopadhyay A. Tools to map target genes of bacterial two-component system response regulators. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:267-276. [PMID: 32212247 PMCID: PMC7318608 DOI: 10.1111/1758-2229.12838] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 05/05/2023]
Abstract
Studies on bacterial physiology are incomplete without knowledge of the signalling and regulatory systems that a bacterium uses to sense and respond to its environment. Two-component systems (TCSs) are among the most prevalent bacterial signalling systems, and they control essential and secondary physiological processes; however, even in model organisms, we lack a complete understanding of the signals sensed, the phosphotransfer partners and the functions regulated by these systems. In this review, we discuss several tools to map the genes targeted by transcriptionally acting TCSs. Many of these tools have been used for studying individual TCSs across diverse species, but systematic approaches to delineate entire signalling networks have been very few. Since genome sequences and high-throughput technologies are now readily available, the methods presented here can be applied to characterize the entire DNA-binding TCS signalling network in any bacterial species and are especially useful for non-model environmental bacteria.
Collapse
Affiliation(s)
- Lara Rajeev
- Biological Systems and Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Megan E. Garber
- Biological Systems and Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
- Department of Comparative BiochemistryUniversity of CaliforniaBerkeleyCA94720USA
| | - Aindrila Mukhopadhyay
- Biological Systems and Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
- Department of Comparative BiochemistryUniversity of CaliforniaBerkeleyCA94720USA
- Environmental Genomics and Systems Biology DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| |
Collapse
|
5
|
Szentes S, Zsibrita N, Koncz M, Zsigmond E, Salamon P, Pletl Z, Kiss A. I-Block: a simple Escherichia coli-based assay for studying sequence-specific DNA binding of proteins. Nucleic Acids Res 2020; 48:e28. [PMID: 31980824 PMCID: PMC7049694 DOI: 10.1093/nar/gkaa014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/26/2019] [Accepted: 01/05/2020] [Indexed: 02/06/2023] Open
Abstract
We have developed a simple method called I-Block assay, which can detect sequence-specific binding of proteins to DNA in Escherichia coli. The method works by detecting competition between the protein of interest and RNA polymerase for binding to overlapping target sites in a plasmid-borne lacI promoter variant. The assay utilizes two plasmids and an E. coli host strain, from which the gene of the Lac repressor (lacI) has been deleted. One of the plasmids carries the lacI gene with a unique NheI restriction site created in the lacI promoter. The potential recognition sequences of the tested protein are inserted into the NheI site. Introduction of the plasmids into the E. coliΔlacI host represses the constitutive β-galactosidase synthesis of the host bacterium. If the studied protein expressed from a compatible plasmid binds to its target site in the lacI promoter, it will interfere with lacI transcription and lead to increased β-galactosidase activity. The method was tested with two zinc finger proteins, with the lambda phage cI857 repressor, and with CRISPR-dCas9 targeted to the lacI promoter. The I-Block assay was shown to work with standard liquid cultures, with cultures grown in microplate and with colonies on X-gal indicator plates.
Collapse
Affiliation(s)
- Sarolta Szentes
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | - Nikolett Zsibrita
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, 6726 Szeged, Hungary.,Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Mihály Koncz
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, 6726 Szeged, Hungary.,Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Eszter Zsigmond
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, 6726 Szeged, Hungary.,Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Pál Salamon
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | - Zita Pletl
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | - Antal Kiss
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, 6726 Szeged, Hungary
| |
Collapse
|
6
|
The Striking Flower-in-Flower Phenotype of Arabidopsis thaliana Nossen (No-0) is Caused by a Novel LEAFY Allele. PLANTS 2019; 8:plants8120599. [PMID: 31847079 PMCID: PMC6963406 DOI: 10.3390/plants8120599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 01/19/2023]
Abstract
The transition to reproduction is a crucial step in the life cycle of any organism. In Arabidopsis thaliana the establishment of reproductive growth can be divided into two phases: Firstly, cauline leaves with axillary meristems are formed and internode elongation begins. Secondly, lateral meristems develop into flowers with defined organs. Floral shoots are usually determinate and suppress the development of lateral shoots. Here, we describe a transposon insertion mutant in the Nossen accession with defects in floral development and growth. Most strikingly is the outgrowth of stems from the axillary bracts of the primary flower carrying secondary flowers. Therefore, we named this mutant flower-in-flower (fif). However, the transposon insertion in the annotated gene is not the cause for the fif phenotype. By means of classical and genome sequencing-based mapping, the mutation responsible for the fif phenotype was found to be in the LEAFY gene. The mutation, a G-to-A exchange in the second exon of LEAFY, creates a novel lfy allele and results in a cysteine-to-tyrosine exchange in the α1-helix of LEAFY’s DNA-binding domain. This exchange abolishes target DNA-binding, whereas subcellular localization and homomerization are not affected. To explain the strong fif phenotype against these molecular findings, several hypotheses are discussed.
Collapse
|
7
|
Theune ML, Bloss U, Brand LH, Ladwig F, Wanke D. Phylogenetic Analyses and GAGA-Motif Binding Studies of BBR/BPC Proteins Lend to Clues in GAGA-Motif Recognition and a Regulatory Role in Brassinosteroid Signaling. FRONTIERS IN PLANT SCIENCE 2019; 10:466. [PMID: 31057577 PMCID: PMC6477699 DOI: 10.3389/fpls.2019.00466] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 03/28/2019] [Indexed: 05/21/2023]
Abstract
Plant GAGA-motif binding factors are encoded by the BARLEY B RECOMBINANT / BASIC PENTACYSTEINE (BBR/BPC) family, which fulfill indispensable functions in growth and development. BBR/BPC proteins control flower development, size of the stem cell niche and seed development through transcriptional regulation of homeotic transcription factor genes. They are responsible for the context dependent recruitment of Polycomb repressive complexes (PRC) or other repressive proteins to GAGA-motifs, which are contained in Polycomb repressive DNA-elements (PREs). Hallmark of the protein family is the highly conserved BPC domain, which is required for DNA binding. Here we study the evolution and diversification of the BBR/BPC family and its DNA-binding domain. Our analyses supports a further division of the family into four main groups (I-IV) and several subgroups, to resolve a strict monophyletic descent of the BPC domain. We prove a polyphyletic origin for group III proteins, which evolved from group I and II members through extensive loss of domains in the N-terminus. Conserved motif searches lend to the identification of a WAR/KHGTN consensus and a TIR/K motif at the very C-terminus of the BPC-domain. We could show by DPI-ELISA that this signature is required for DNA-binding in AtBPC1. Additional binding studies with AtBPC1, AtBPC6 and mutated oligonucleotides consolidated the binding to GAGA tetramers. To validate these findings, we used previously published ChIP-seq data from GFP-BPC6. We uncovered that many genes of the brassinosteroid signaling pathway are targeted by AtBPC6. Consistently, bpc6, bpc4 bpc6, and lhp1 bpc4 bpc4 mutants display brassinosteroid-dependent root growth phenotypes. Both, a function in brassinosteroid signaling and our phylogenetic data supports a link between BBR/BPC diversification in the land plant lineage and the complexity of flower and seed plant evolution.
Collapse
Affiliation(s)
- Marius L. Theune
- Molecular Plant Biology, Saarland University, Saarbrücken, Germany
| | - Ulrich Bloss
- ZMBP-Plant Physiology, Tübingen University, Tübingen, Germany
| | - Luise H. Brand
- ZMBP-Plant Physiology, Tübingen University, Tübingen, Germany
| | | | - Dierk Wanke
- Molecular Plant Biology, Saarland University, Saarbrücken, Germany
- ZMBP-Plant Physiology, Tübingen University, Tübingen, Germany
- *Correspondence: Dierk Wanke,
| |
Collapse
|
8
|
Shanks CM, Hecker A, Cheng CY, Brand L, Collani S, Schmid M, Schaller GE, Wanke D, Harter K, Kieber JJ. Role of BASIC PENTACYSTEINE transcription factors in a subset of cytokinin signaling responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:458-473. [PMID: 29763523 DOI: 10.1111/tpj.13962] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/26/2018] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
Cytokinin plays diverse roles in plant growth and development, generally acting by modulating gene transcription in target tissues. The type-B Arabidopsis response regulators (ARR) transcription factors have emerged as primary targets of cytokinin signaling and are required for essentially all cytokinin-mediated changes in gene expression. The diversity of cytokinin function is likely imparted by the activity of various transcription factors working with the type-B ARRs to alter specific sets of target genes. One potential set of co-regulators modulating the cytokinin response are the BARLEY B-RECOMBINANT/BASIC PENTACYSTEINE (BBR/BPC) family of plant-specific transcription factors. Here, we show that disruption of multiple BPCs results in reduced sensitivity to cytokinin. Further, the BPCs are necessary for the induction of a subset of genes in response to cytokinin. We identified direct in vivo targets of BPC6 using ChIP-Seq and found an enrichment of promoters of genes differentially expressed in response to cytokinin. Further, a significant number of BPC6 regulated genes are also direct targets of the type-B ARRs. Potential cis-binding elements for a number of other transcription factors linked to cytokinin action are enriched in the BPC binding fragments, including those for the cytokinin response factors (CRFs). In addition, several BPCs interact with a subset of type-A ARRs. Consistent with these results, a significant number of genes whose expression is altered in bpc mutant roots are also mis-expressed in crf1,3,5,6 and type-A arr3,4,5,6,7,8,9,15 mutant roots. These results suggest that the BPCs are part of a complex network of transcription factors that are involved in the response to cytokinin.
Collapse
Affiliation(s)
- Carly M Shanks
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Andreas Hecker
- Center for Plant Molecular Biology, Plant Physiology, University of Tübingen, 72076, Tübingen, Germany
| | - Chia-Yi Cheng
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Luise Brand
- Center for Plant Molecular Biology, Plant Physiology, University of Tübingen, 72076, Tübingen, Germany
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829, Köln, Germany
| | - Silvio Collani
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87, Umeå, Sweden
- Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Markus Schmid
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87, Umeå, Sweden
| | - G Eric Schaller
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755 (603) 646-1347, USA
| | - Dierk Wanke
- Center for Plant Molecular Biology, Plant Physiology, University of Tübingen, 72076, Tübingen, Germany
- Saarland University, Molecular Plant Biology, Campus A2.4, 66123, Saarbrücken, Germany
| | - Klaus Harter
- Center for Plant Molecular Biology, Plant Physiology, University of Tübingen, 72076, Tübingen, Germany
| | - Joseph J Kieber
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
9
|
Gillessen M, Kwak PB, Tamayo A. A simple method to measure CLOCK-BMAL1 DNA binding activity in tissue and cell extracts. F1000Res 2017; 6:1316. [DOI: 10.12688/f1000research.11685.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2017] [Indexed: 01/05/2023] Open
Abstract
The proteins CLOCK and BMAL1 form a heterodimeric transcription factor essential to circadian rhythms in mammals. Daily rhythms of CLOCK-BMAL1 DNA binding activity are known to oscillate with target gene expression in vivo. Here we present a highly sensitive assay that recapitulates native CLOCK-BMAL1 DNA binding rhythms from crude tissue extracts, which we call the Clock Protein-DNA Binding Assay (CPDBA). This method can detect less than 2-fold differences in DNA binding activity, and can deliver results in two hours or less using 10 microliters or less of crude extract, while requiring neither specialized equipment nor expensive probes. To demonstrate the sensitivity and versatility of this assay, we show that enzymatic removal of phosphate groups from proteins in tissue extracts or pharmacological inhibition of casein kinase I in cell culture increased CLOCK-BMAL1 DNA binding activity by ~1.5 to ~2 fold, as measured by the CPDBA. In addition, we show that the CPDBA can measure CLOCK-BMAL1 binding to reconstituted chromatin. The CPDBA is a sensitive, fast, efficient and versatile probe of clock function.
Collapse
|
10
|
Gillessen M, Kwak PB, Tamayo A. A simple method to measure CLOCK-BMAL1 DNA binding activity in tissue and cell extracts. F1000Res 2017; 6:1316. [PMID: 28928952 PMCID: PMC5580408 DOI: 10.12688/f1000research.11685.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2017] [Indexed: 12/14/2022] Open
Abstract
The proteins CLOCK and BMAL1 form a heterodimeric transcription factor essential to circadian rhythms in mammals. Daily rhythms of CLOCK-BMAL1 DNA binding activity are known to oscillate with target gene expression in vivo. Here we present a highly sensitive assay that recapitulates native CLOCK-BMAL1 DNA binding rhythms from crude tissue extracts, which we call the Clock Protein-DNA Binding Assay (CPDBA). This method can detect less than 2-fold differences in DNA binding activity, and can deliver results in two hours or less using 10 microliters (~10 micrograms) or less of crude extract, while requiring neither specialized equipment nor expensive probes. To demonstrate the sensitivity and versatility of this assay, we show that enzymatic removal of phosphate groups from proteins in tissue extracts or pharmacological inhibition of casein kinase I in cell culture increased CLOCK-BMAL1 DNA binding activity by ~1.5 to ~2 fold, as measured by the CPDBA. In addition, we show that the CPDBA can measure CLOCK-BMAL1 binding to reconstituted chromatin. The CPDBA is a sensitive, fast, efficient and versatile probe of clock function.
Collapse
Affiliation(s)
- Maud Gillessen
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA.,Department of Biology, University of Namur, 5000 Namur, Belgium
| | - Pieter Bas Kwak
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Alfred Tamayo
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|