1
|
Wang L, Hu J, Li K, Zhao Y, Zhu M. Advancements in gene editing technologies for probiotic-enabled disease therapy. iScience 2024; 27:110791. [PMID: 39286511 PMCID: PMC11403445 DOI: 10.1016/j.isci.2024.110791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Probiotics typically refer to microorganisms that have been identified for their health benefits, and they are added to foods or supplements to promote the health of the host. A growing number of probiotic strains have been identified lately and developed into valuable regulatory pharmaceuticals for nutritional and medical applications. Gene editing technologies play a crucial role in addressing the need for safe and therapeutic probiotics in disease treatment. These technologies offer valuable assistance in comprehending the underlying mechanisms of probiotic bioactivity and in the development of advanced probiotics. This review aims to offer a comprehensive overview of gene editing technologies applied in the engineering of both traditional and next-generation probiotics. It further explores the potential for on-demand production of customized products derived from enhanced probiotics, with a particular emphasis on the future of gene editing in the development of live biotherapeutics.
Collapse
Affiliation(s)
- Lixuan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Motao Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Fisher DJ, Beare PA. Recent advances in genetic systems in obligate intracellular human-pathogenic bacteria. Front Cell Infect Microbiol 2023; 13:1202245. [PMID: 37404720 PMCID: PMC10315504 DOI: 10.3389/fcimb.2023.1202245] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/22/2023] [Indexed: 07/06/2023] Open
Abstract
The ability to genetically manipulate a pathogen is fundamental to discovering factors governing host-pathogen interactions at the molecular level and is critical for devising treatment and prevention strategies. While the genetic "toolbox" for many important bacterial pathogens is extensive, approaches for modifying obligate intracellular bacterial pathogens were classically limited due in part to the uniqueness of their obligatory lifestyles. Many researchers have confronted these challenges over the past two and a half decades leading to the development of multiple approaches to construct plasmid-bearing recombinant strains and chromosomal gene inactivation and deletion mutants, along with gene-silencing methods enabling the study of essential genes. This review will highlight seminal genetic achievements and recent developments (past 5 years) for Anaplasma spp., Rickettsia spp., Chlamydia spp., and Coxiella burnetii including progress being made for the still intractable Orientia tsutsugamushi. Alongside commentary of the strengths and weaknesses of the various approaches, future research directions will be discussed to include methods for C. burnetii that should have utility in the other obligate intracellular bacteria. Collectively, the future appears bright for unraveling the molecular pathogenic mechanisms of these significant pathogens.
Collapse
Affiliation(s)
- Derek J. Fisher
- School of Biological Sciences, Southern Illinois University, Carbondale, IL, United States
| | - Paul A. Beare
- Rocky Mountain Laboratory, National Institute of Health, Hamilton, MT, United States
| |
Collapse
|
3
|
Wurihan W, Huang Y, Weber AM, Wu X, Fan H. Nonspecific toxicities of Streptococcus pyogenes and Staphylococcus aureus dCas9 in Chlamydia trachomatis. Pathog Dis 2019; 77:ftaa005. [PMID: 32011704 PMCID: PMC7040368 DOI: 10.1093/femspd/ftaa005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/31/2020] [Indexed: 02/06/2023] Open
Abstract
Chlamydiae are common, important pathogens for humans and animals alike. Despite recent advancement in genetics, scientists are still searching for efficient tools to knock out or knock down the expression of chromosomal genes. We attempted to adopt a dCas9-based CRISPR interference (CRISPRi) technology to conditionally knock down gene expression in Chlamydia trachomatis using an anhydrotetracycline (ATC)-inducible expression system. Surprisingly, expression of the commonly used Streptococcus pyogenes dCas9 in C. trachomatis causes strong inhibition in the absence of any guide RNA (gRNA). Staphylococcus aureus dCas9 also shows strong toxicity in the presence of only an empty gRNA scaffold. Toxicity of the S. pyogenes dCas9 is readily observed with as little as 0.2 nM ATC. Growth inhibition by S. aureus dCas9 is evident starting at 1.0 nM ATC. In contrast, C. trachomatis growth was not affected by methionine-tRNA ligase overexpression induced with 10 nM ATC. We conclude that S. pyogenes and S. aureus dCas9 proteins in their current forms have limited utility for chlamydial research and suggest strategies to overcome this problem.
Collapse
Affiliation(s)
- Wurihan Wurihan
- Department of Pharmacology, Rutgers University Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, New Jersey 08854, USA
| | - Yehong Huang
- Department of Pharmacology, Rutgers University Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, New Jersey 08854, USA
- Department of Parasitology, Central South University Xiangya Medical School, 110 Xiangya Road, Changsha, Hunan 410013, China
| | - Alec M Weber
- Department of Pharmacology, Rutgers University Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, New Jersey 08854, USA
| | - Xiang Wu
- Department of Parasitology, Central South University Xiangya Medical School, 110 Xiangya Road, Changsha, Hunan 410013, China
| | - Huizhou Fan
- Department of Pharmacology, Rutgers University Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, New Jersey 08854, USA
| |
Collapse
|
4
|
Cortina ME, Ende RJ, Bishop RC, Bayne C, Derré I. Chlamydia trachomatis and Chlamydia muridarum spectinomycin resistant vectors and a transcriptional fluorescent reporter to monitor conversion from replicative to infectious bacteria. PLoS One 2019; 14:e0217753. [PMID: 31170215 PMCID: PMC6553856 DOI: 10.1371/journal.pone.0217753] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/17/2019] [Indexed: 12/17/2022] Open
Abstract
Chlamydia trachomatis infections are the leading cause of sexually transmitted infections of bacterial origin. Lower genital tract infections are often asymptomatic, and therefore left untreated, leading to ascending infections that have long-term consequences on female reproductive health. Human pathology can be recapitulated in mice with the mouse adapted strain C. muridarum. Eight years into the post-genetic era, significant advances to expand the Chlamydia genetic toolbox have been made to facilitate the study of this important human pathogen. However, the need for additional tools remains, especially for C. muridarum. Here, we describe a new set of spectinomycin resistant E. coli-Chlamydia shuttle vectors, for C. trachomatis and C. muridarum. These versatile vectors allow for expression and localization studies of Chlamydia effectors, such as Inc proteins, and will be instrumental for mutant complementation studies. In addition, we have exploited the differential expression of specific Chlamydia genes during the developmental cycle to engineer an omcA::gfp fluorescent transcriptional reporter. This novel tool allows for monitoring RB to EB conversion at the bacterial level. Spatiotemporal tracking of GFP expression within individual inclusions revealed that RB to EB conversion initiates in bacteria located at the edge of the inclusion and correlates with the time post initiation of bacterial replication and inclusion size. Comparison between primary and secondary inclusions potentially suggests that the environment in which the inclusions develop influences the timing of conversion. Altogether, the Chlamydia genetic tools described here will benefit the field, as we continue to investigate the molecular mechanisms underlying Chlamydia-host interaction and pathogenesis.
Collapse
Affiliation(s)
- María Eugenia Cortina
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, United States of America
| | - Rachel J. Ende
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, United States of America
| | - R. Clayton Bishop
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, United States of America
| | - Charlie Bayne
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, United States of America
| | - Isabelle Derré
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, United States of America
- * E-mail:
| |
Collapse
|
5
|
Pais SV, Key CE, Borges V, Pereira IS, Gomes JP, Fisher DJ, Mota LJ. CteG is a Chlamydia trachomatis effector protein that associates with the Golgi complex of infected host cells. Sci Rep 2019; 9:6133. [PMID: 30992493 PMCID: PMC6468002 DOI: 10.1038/s41598-019-42647-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/22/2019] [Indexed: 12/17/2022] Open
Abstract
Chlamydia trachomatis is a bacterial pathogen causing ocular and genital infections in humans. C. trachomatis multiplies exclusively inside host cells within a characteristic vacuole, from where it manipulates host cells by injecting them with type III secretion effector proteins. Here, we identified CteG as the first C. trachomatiseffector associated with the Golgi. For this, C. trachomatis strains expressing candidate effectors fused to a double hemagglutinin (2HA) tag were constructed. Then, among these strains, immunofluorescence microscopy revealed that CteG-2HA was delivered into the cytoplasm of infected cells. Between 16–20 h post-infection, CteG-2HA mostly associated with the Golgi; however, CteG-2HA also appeared at the host cell plasma membrane, and at 30 or 40 h post-infection this was its predominant localization. This change in the main localization of CteG-2HA was independent of intact microfilaments or microtubules. Ectopic expression of different regions of CteG (656 amino acid residues) in uninfected cells revealed that its first 100 residues contain a Golgi targeting region. Although a C. trachomatis cteG mutant did not display a defect in intracellular multiplication, CteG induced a vacuolar protein sorting defect when expressed in Saccharomyces cerevisiae. This suggested that CteG might function by subverting host cell vesicular transport.
Collapse
Affiliation(s)
- Sara V Pais
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Charlotte E Key
- Department of Microbiology, Southern Illinois University, Carbondale, Illinois, USA
| | - Vítor Borges
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Inês S Pereira
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - João Paulo Gomes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Derek J Fisher
- Department of Microbiology, Southern Illinois University, Carbondale, Illinois, USA
| | - Luís Jaime Mota
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal.
| |
Collapse
|
6
|
Almeida F, Luís MP, Pereira IS, Pais SV, Mota LJ. The Human Centrosomal Protein CCDC146 Binds Chlamydia trachomatis Inclusion Membrane Protein CT288 and Is Recruited to the Periphery of the Chlamydia-Containing Vacuole. Front Cell Infect Microbiol 2018; 8:254. [PMID: 30094225 PMCID: PMC6070772 DOI: 10.3389/fcimb.2018.00254] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/04/2018] [Indexed: 01/12/2023] Open
Abstract
Chlamydia trachomatis is an obligate intracellular human pathogen causing mainly ocular and genital infections of significant clinical and public health impact. C. trachomatis multiplies intracellularly in a membrane bound vacuole, known as inclusion. Both extracellularly and from within the inclusion, C. trachomatis uses a type III secretion system to deliver several effector proteins into the cytoplasm of host cells. A large proportion of these effectors, the inclusion membrane (Inc) proteins, are exposed to the host cell cytosol but possess a characteristic hydrophobic domain mediating their insertion in the inclusion membrane. By yeast two-hybrid, we found that C. trachomatis Inc CT288 interacts with the human centrosomal protein CCDC146 (coiled-coil domain-containing protein 146). The interaction was also detected by co-immunoprecipitation in mammalian cells either ectopically expressing CCDC146 and CT288 or ectopically expressing CCDC146 and infected by a C. trachomatis strain expressing epitope-tagged and inclusion membrane-localized CT288. In uninfected mammalian cells, ectopically expressed full-length CCDC146 (955 amino acid residues) localized at the centrosome; but in cells infected by wild-type C. trachomatis, its centrosomal localization was less evident and CCDC146 accumulated around the inclusion. Recruitment of CCDC146 to the inclusion periphery did not require intact host Golgi, microtubules or microfilaments, but was dependent on chlamydial protein synthesis. Full-length CCDC146 also accumulated at the periphery of the inclusion in cells infected by a C. trachomatis ct288 mutant; however, a C-terminal fragment of CCDC146 (residues 692–955), which interacts with CT288, showed differences in localization at the periphery of the inclusion in cells infected by wild-type or ct288 mutant C. trachomatis. This suggests a model in which chlamydial proteins other than CT288 recruit CCDC146 to the periphery of the inclusion, where the CT288-CCDC146 interaction might contribute to modulate the function of this host protein.
Collapse
Affiliation(s)
- Filipe Almeida
- Research Unit on Applied Molecular Biosciences (UCIBIO) - REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Costa da Caparica, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Maria P Luís
- Research Unit on Applied Molecular Biosciences (UCIBIO) - REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Costa da Caparica, Portugal
| | - Inês Serrano Pereira
- Research Unit on Applied Molecular Biosciences (UCIBIO) - REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Costa da Caparica, Portugal
| | - Sara V Pais
- Research Unit on Applied Molecular Biosciences (UCIBIO) - REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Costa da Caparica, Portugal
| | - Luís Jaime Mota
- Research Unit on Applied Molecular Biosciences (UCIBIO) - REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Costa da Caparica, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
7
|
Advances and Obstacles in the Genetic Dissection of Chlamydial Virulence. Curr Top Microbiol Immunol 2017; 412:133-158. [PMID: 29090367 DOI: 10.1007/82_2017_76] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Obligate intracellular pathogens in the family Chlamydiaceae infect taxonomically diverse eukaryotes ranging from amoebae to mammals. However, many fundamental aspects of chlamydial cell biology and pathogenesis remain poorly understood. Genetic dissection of chlamydial biology has historically been hampered by a lack of genetic tools. Exploitation of the ability of chlamydia to recombine genomic material by lateral gene transfer (LGT) ushered in a new era in chlamydia research. With methods to map mutations in place, genetic screens were able to assign functions and phenotypes to specific chlamydial genes. Development of an approach for stable transformation of chlamydia also provided a mechanism for gene delivery and platforms for disrupting chromosomal genes. Here, we explore how these and other tools have been used to test hypotheses concerning the functions of known chlamydial virulence factors and discover the functions of completely uncharacterized genes. Refinement and extension of the existing genetic tools to additional Chlamydia spp. will substantially advance understanding of the biology and pathogenesis of this important group of pathogens.
Collapse
|