1
|
Safari M, Scotto L, Basseville A, Litman T, Xue H, Petrukhin L, Zhou P, Morales DV, Damoci C, Zhu M, Hull K, Olive KP, Fojo T, Romo D, Bates SE. Combined HDAC and eIF4A inhibition: A novel epigenetic therapy for pancreatic adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.30.600495. [PMID: 39005268 PMCID: PMC11244854 DOI: 10.1101/2024.06.30.600495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Pancreatic ductal adenocarcinoma-(PDAC) needs innovative approaches due to its 12% 5-year survival despite current therapies. We show marked sensitivity of pancreatic cancer cells to the combination of a novel eIF4A inhibitor, des-methyl pateamine A (DMPatA), and a histone deacetylase inhibitor, romidepsin, inducing epigenetic reprogramming as an innovative therapeutic strategy. Exploring the mechanistic activity of this combination showed that with a short duration of romidepsin at low doses, robust acetylation persisted up to 48h with the combination, while histone acetylation rapidly faded with monotherapy. This represents an unexpected mechanism of action against PDAC cells that triggers transcriptional overload, metabolic stress, and augmented DNA damage. Structurally different class I HDAC inhibitors exhibit the same hyperacetylation patterns when co-administered with DMPatA, suggesting a class effect. We show efficacy of this combination regimen against tumor growth in a MIA PaCa-2 xenograft model of PDAC with persistent hyperacetylation confirmed in tumor samples. STATEMENT OF SIGNIFICANCE Pancreatic ductal adenocarcinoma, a significant clinical challenge, could benefit from the latent potential of epigenetic therapies like HDAC inhibitors-(HDIs), typically limited to hematological malignancies. Our study shows that a synergistic low dose combination of HDIs with an eIF4A-inhibitor in pancreatic cancer models results in marked pre-clinical efficacy, offering a promising new treatment strategy.
Collapse
|
2
|
Carlsson MJ, Vollmer AS, Demuth P, Heylmann D, Reich D, Quarz C, Rasenberger B, Nikolova T, Hofmann TG, Christmann M, Fuhlbrueck JA, Stegmüller S, Richling E, Cartus AT, Fahrer J. p53 triggers mitochondrial apoptosis following DNA damage-dependent replication stress by the hepatotoxin methyleugenol. Cell Death Dis 2022; 13:1009. [PMID: 36446765 PMCID: PMC9708695 DOI: 10.1038/s41419-022-05446-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
Liver cancer is one of the most frequent tumor entities worldwide, which is causally linked to viral infection, fatty liver disease, life-style factors and food-borne carcinogens, particularly aflatoxins. Moreover, genotoxic plant toxins including phenylpropenes are suspected human liver carcinogens. The phenylpropene methyleugenol (ME) is a constituent of essential oils in many plants and occurs in herbal medicines, food, and cosmetics. Following its uptake, ME undergoes Cytochrome P450 (CYP) and sulfotransferase 1A1 (SULT1A1)-dependent metabolic activation, giving rise to DNA damage. However, little is known about the cellular response to the induced DNA adducts. Here, we made use of different SULT1A1-proficient cell models including primary hepatocytes that were treated with 1'-hydroxymethyleugenol (OH-ME) as main phase I metabolite. Firstly, mass spectrometry showed a concentration-dependent formation of N2-MIE-dG as major DNA adduct, strongly correlating with SULT1A1 expression as attested in cells with and without human SULT1A1. ME-derived DNA damage activated mainly the ATR-mediated DNA damage response as shown by phosphorylation of CHK1 and histone 2AX, followed by p53 accumulation and CHK2 phosphorylation. Consistent with these findings, the DNA adducts decreased replication speed and caused replication fork stalling. OH-ME treatment reduced viability particularly in cell lines with wild-type p53 and triggered apoptotic cell death, which was rescued by pan-caspase-inhibition. Further experiments demonstrated mitochondrial apoptosis as major cell death pathway. ME-derived DNA damage caused upregulation of the p53-responsive genes NOXA and PUMA, Bax activation, and cytochrome c release followed by caspase-9 and caspase-3 cleavage. We finally demonstrated the crucial role of p53 for OH-ME triggered cell death as evidenced by reduced pro-apoptotic gene expression, strongly attenuated Bax activation and cell death inhibition upon genetic knockdown or pharmacological inhibition of p53. Taken together, our study demonstrates for the first time that ME-derived DNA damage causes replication stress and triggers mitochondrial apoptosis via the p53-Bax pathway.
Collapse
Affiliation(s)
- Max J. Carlsson
- grid.7645.00000 0001 2155 0333Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Anastasia S. Vollmer
- grid.8664.c0000 0001 2165 8627Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, 35392 Giessen, Germany ,grid.411544.10000 0001 0196 8249Present Address: Department of Dermatology, University Medical Center, 69120 Heidelberg, Germany
| | - Philipp Demuth
- grid.7645.00000 0001 2155 0333Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Daniel Heylmann
- grid.8664.c0000 0001 2165 8627Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Diana Reich
- grid.410607.4Institute of Toxicology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Caroline Quarz
- grid.7645.00000 0001 2155 0333Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Birgit Rasenberger
- grid.410607.4Institute of Toxicology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Teodora Nikolova
- grid.410607.4Institute of Toxicology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Thomas G. Hofmann
- grid.410607.4Institute of Toxicology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Markus Christmann
- grid.410607.4Institute of Toxicology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Julia A. Fuhlbrueck
- grid.7645.00000 0001 2155 0333Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Simone Stegmüller
- grid.7645.00000 0001 2155 0333Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Elke Richling
- grid.7645.00000 0001 2155 0333Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Alexander T. Cartus
- grid.7645.00000 0001 2155 0333Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Jörg Fahrer
- grid.7645.00000 0001 2155 0333Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany ,grid.8664.c0000 0001 2165 8627Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, 35392 Giessen, Germany ,grid.410607.4Institute of Toxicology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| |
Collapse
|
3
|
Cheruiyot A, Li S, Nonavinkere Srivatsan S, Ahmed T, Chen Y, Lemacon DS, Li Y, Yang Z, Wadugu BA, Warner WA, Pruett-Miller SM, Obeng EA, Link DC, He D, Xiao F, Wang X, Bailis JM, Walter MJ, You Z. Nonsense-Mediated RNA Decay Is a Unique Vulnerability of Cancer Cells Harboring SF3B1 or U2AF1 Mutations. Cancer Res 2021; 81:4499-4513. [PMID: 34215620 DOI: 10.1158/0008-5472.can-20-4016] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/26/2021] [Accepted: 06/30/2021] [Indexed: 11/16/2022]
Abstract
Nonsense-mediated RNA decay (NMD) is recognized as an RNA surveillance pathway that targets aberrant mRNAs with premature translation termination codons (PTC) for degradation, however, its molecular mechanisms and roles in health and disease remain incompletely understood. In this study, we developed a novel reporter system to accurately measure NMD activity in individual cells. A genome-wide CRISPR-Cas9 knockout screen using this reporter system identified novel NMD-promoting factors, including multiple components of the SF3B complex and other U2 spliceosome factors. Interestingly, cells with mutations in the spliceosome genes SF3B1 and U2AF1, which are commonly found in myelodysplastic syndrome (MDS) and cancers, have overall attenuated NMD activity. Compared with wild-type (WT) cells, SF3B1- and U2AF1-mutant cells were more sensitive to NMD inhibition, a phenotype that is accompanied by elevated DNA replication obstruction, DNA damage, and chromosomal instability. Remarkably, the sensitivity of spliceosome mutant cells to NMD inhibition was rescued by overexpression of RNase H1, which removes R-loops in the genome. Together, these findings shed new light on the functional interplay between NMD and RNA splicing and suggest a novel synthetic lethal strategy for the treatment of MDS and cancers with spliceosome mutations. SIGNIFICANCE: This study has developed a novel NMD reporter system and identified a potential therapeutic approach of targeting the NMD pathway to treat cancer with spliceosome gene mutations.
Collapse
Affiliation(s)
- Abigael Cheruiyot
- Department of Cell Biology and Physiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Shan Li
- Department of Cell Biology and Physiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Sridhar Nonavinkere Srivatsan
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Washington University School in St. Louis, St. Louis, Missouri
| | - Tanzir Ahmed
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Washington University School in St. Louis, St. Louis, Missouri
| | - Yuhao Chen
- Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Delphine S Lemacon
- Department of Cell Biology and Physiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Ying Li
- Department of Cell Biology and Physiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri.,Clinical Biobank, The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Zheng Yang
- Department of Cell Biology and Physiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri.,Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China
| | - Brian A Wadugu
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Washington University School in St. Louis, St. Louis, Missouri
| | - Wayne A Warner
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Washington University School in St. Louis, St. Louis, Missouri
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Esther A Obeng
- Molecular Oncology Division, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Daniel C Link
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Washington University School in St. Louis, St. Louis, Missouri
| | - Dalin He
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China
| | - Fei Xiao
- Clinical Biobank, The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Xiaowei Wang
- Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | | | - Matthew J Walter
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Washington University School in St. Louis, St. Louis, Missouri
| | - Zhongsheng You
- Department of Cell Biology and Physiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri.
| |
Collapse
|
4
|
Wang Y, Chen Y, Wang C, Yang M, Wang Y, Bao L, Wang JE, Kim B, Chan KY, Xu W, Capota E, Ortega J, Nijhawan D, Li GM, Luo W, Wang Y. MIF is a 3' flap nuclease that facilitates DNA replication and promotes tumor growth. Nat Commun 2021; 12:2954. [PMID: 34012010 PMCID: PMC8134555 DOI: 10.1038/s41467-021-23264-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
How cancer cells cope with high levels of replication stress during rapid proliferation is currently unclear. Here, we show that macrophage migration inhibitory factor (MIF) is a 3’ flap nuclease that translocates to the nucleus in S phase. Poly(ADP-ribose) polymerase 1 co-localizes with MIF to the DNA replication fork, where MIF nuclease activity is required to resolve replication stress and facilitates tumor growth. MIF loss in cancer cells leads to mutation frequency increases, cell cycle delays and DNA synthesis and cell growth inhibition, which can be rescued by restoring MIF, but not nuclease-deficient MIF mutant. MIF is significantly upregulated in breast tumors and correlates with poor overall survival in patients. We propose that MIF is a unique 3’ nuclease, excises flaps at the immediate 3’ end during DNA synthesis and favors cancer cells evading replication stress-induced threat for their growth. Replication stress is associated with cancer formation and progression. Here the authors reveal that the macrophage migration inhibitory factor (MIF) functions as 3’ flap nuclease involved in resolving replication stress affecting overall tumor progression.
Collapse
Affiliation(s)
- Yijie Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yan Chen
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Chenliang Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Mingming Yang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yanan Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Lei Bao
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jennifer E Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - BongWoo Kim
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kara Y Chan
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Weizhi Xu
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Emanuela Capota
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Janice Ortega
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Deepak Nijhawan
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Guo-Min Li
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Weibo Luo
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yingfei Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA. .,Department of Neurology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
5
|
Targeting the DNA replication stress phenotype of KRAS mutant cancer cells. Sci Rep 2021; 11:3656. [PMID: 33574444 PMCID: PMC7878884 DOI: 10.1038/s41598-021-83142-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 01/28/2021] [Indexed: 12/16/2022] Open
Abstract
Mutant KRAS is a common tumor driver and frequently confers resistance to anti-cancer treatments such as radiation. DNA replication stress in these tumors may constitute a therapeutic liability but is poorly understood. Here, using single-molecule DNA fiber analysis, we first characterized baseline replication stress in a panel of unperturbed isogenic and non-isogenic cancer cell lines. Correlating with the observed enhanced replication stress we found increased levels of cytosolic double-stranded DNA in KRAS mutant compared to wild-type cells. Yet, despite this phenotype replication stress-inducing agents failed to selectively impact KRAS mutant cells, which were protected by CHK1. Similarly, most exogenous stressors studied did not differentially augment cytosolic DNA accumulation in KRAS mutant compared to wild-type cells. However, we found that proton radiation was able to slow fork progression and preferentially induce fork stalling in KRAS mutant cells. Proton treatment also partly reversed the radioresistance associated with mutant KRAS. The cellular effects of protons in the presence of KRAS mutation clearly contrasted that of other drugs affecting replication, highlighting the unique nature of the underlying DNA damage caused by protons. Taken together, our findings provide insight into the replication stress response associated with mutated KRAS, which may ultimately yield novel therapeutic opportunities.
Collapse
|