1
|
Takamori S, Mimura H, Osaki T, Kondo T, Shintomi M, Shintomi K, Ohsugi M, Takeuchi S. Nuclear Assembly in Giant Unilamellar Vesicles Encapsulating Xenopus Egg Extract. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2412126. [PMID: 40390663 DOI: 10.1002/smll.202412126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/17/2025] [Indexed: 05/21/2025]
Abstract
The reconstitution of a cell nucleus in a lipid bilayer-enclosed synthetic cell makes great strides in bottom-up synthetic biology. In this study, a method for assembling a nucleus in giant unilamellar vesicles (GUVs) is proposed. To induce reconstitution of the nucleus, the interphase egg extract of African clawed frogs Xenopus laevis is utilized, known as a biochemically controllable cell-free system capable of transforming an added sperm chromatin into a nucleus in vitro. The GUV formation efficiency is enhanced by the inverted emulsion method through incorporating prolonged waiting time and adding chloroform into lipid-dispersed oil, facilitating subsequent nuclear assembly reactions in the GUVs. Characterization of nucleus-like structures formed in the GUVs revealed the presence of dense DNA and accumulated GFP-NLS in the structure, indicative of functional nuclear import. Immunostaining further validated the presence of nuclear pore complexes on the surfaces of these nucleus-like structures. The approach offers a versatile platform for constructing artificial cellular systems that closely mimic eukaryotic cells.
Collapse
Affiliation(s)
- Sho Takamori
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa, 213-0012, Japan
| | - Hisatoshi Mimura
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa, 213-0012, Japan
| | - Toshihisa Osaki
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa, 213-0012, Japan
| | - Tomo Kondo
- Department of Life Science, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, 153-8902, Japan
| | - Miyuki Shintomi
- Life Science Network, The University of Tokyo, Meguro-ku, Tokyo, 153-8902, Japan
| | - Keishi Shintomi
- Chromosome Dynamics Laboratory, RIKEN, Wako, Saitama, 351-0198, Japan
| | - Miho Ohsugi
- Department of Life Science, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, 153-8902, Japan
| | - Shoji Takeuchi
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa, 213-0012, Japan
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
2
|
Jevitt AM, Rankin BD, Chen J, Rankin S. The cohesin modifier ESCO2 is stable during DNA replication. Chromosome Res 2023; 31:6. [PMID: 36708487 PMCID: PMC9884251 DOI: 10.1007/s10577-023-09711-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/01/2022] [Accepted: 12/13/2022] [Indexed: 01/29/2023]
Abstract
Cohesion between sister chromatids by the cohesin protein complex ensures accurate chromosome segregation and enables recombinational DNA repair. Sister chromatid cohesion is promoted by acetylation of the SMC3 subunit of cohesin by the ESCO2 acetyltransferase, inhibiting cohesin release from chromatin. The interaction of ESCO2 with the DNA replication machinery, in part through PCNA-interacting protein (PIP) motifs in ESCO2, is required for full cohesion establishment. Recent reports have suggested that Cul4-dependent degradation regulates the level of ESCO2 protein following replication. To follow up on these observations, we have characterized ESCO2 stability in Xenopus egg extracts, a cell-free system that recapitulates cohesion establishment in vitro. We found that ESCO2 was stable during DNA replication in this system. Indeed, further challenging the system by inducing DNA damage signaling or increasing the number of nuclei undergoing DNA replication had no significant impact on the stability of ESCO2. In transgenic somatic cell lines, we also did not see evidence of GFP-ESCO2 degradation during S phase of the cell cycle using both flow cytometry and live-cell imaging. We conclude that ESCO2 is stable during DNA replication in both embryonic and somatic cells.
Collapse
Affiliation(s)
- Allison M Jevitt
- Cell Cycle and Cancer Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Brooke D Rankin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Jingrong Chen
- Cell Cycle and Cancer Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Susannah Rankin
- Cell Cycle and Cancer Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
3
|
Yoshida MM, Kinoshita K, Aizawa Y, Tane S, Yamashita D, Shintomi K, Hirano T. Molecular dissection of condensin II-mediated chromosome assembly using in vitro assays. eLife 2022; 11:78984. [PMID: 35983835 PMCID: PMC9433093 DOI: 10.7554/elife.78984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022] Open
Abstract
In vertebrates, condensin I and condensin II cooperate to assemble rod-shaped chromosomes during mitosis. Although the mechanism of action and regulation of condensin I have been studied extensively, our corresponding knowledge of condensin II remains very limited. By introducing recombinant condensin II complexes into Xenopus egg extracts, we dissect the roles of its individual subunits in chromosome assembly. We find that one of two HEAT subunits, CAP-D3, plays a crucial role in condensin II-mediated assembly of chromosome axes, whereas the other HEAT subunit, CAP-G2, has a very strong negative impact on this process. The structural maintenance of chromosomes ATPase and the basic amino acid clusters of the kleisin subunit CAP-H2 are essential for this process. Deletion of the C-terminal tail of CAP-D3 increases the ability of condensin II to assemble chromosomes and further exposes a hidden function of CAP-G2 in the lateral compaction of chromosomes. Taken together, our results uncover a multilayered regulatory mechanism unique to condensin II, and provide profound implications for the evolution of condensin II.
Collapse
Affiliation(s)
| | | | - Yuuki Aizawa
- Chromosome Dynamics Laboratory, RIKEN, Wako, Japan
| | - Shoji Tane
- Chromosome Dynamics Laboratory, RIKEN, Wako, Japan
| | | | | | | |
Collapse
|
4
|
Shintomi K. Making Mitotic Chromosomes in a Test Tube. EPIGENOMES 2022; 6:20. [PMID: 35893016 PMCID: PMC9326633 DOI: 10.3390/epigenomes6030020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
Mitotic chromosome assembly is an essential preparatory step for accurate transmission of the genome during cell division. During the past decades, biochemical approaches have uncovered the molecular basis of mitotic chromosomes. For example, by using cell-free assays of frog egg extracts, the condensin I complex central for the chromosome assembly process was first identified, and its functions have been intensively studied. A list of chromosome-associated proteins has been almost completed, and it is now possible to reconstitute structures resembling mitotic chromosomes with a limited number of purified factors. In this review, I introduce how far we have come in understanding the mechanism of chromosome assembly using cell-free assays and reconstitution assays, and I discuss their potential applications to solve open questions.
Collapse
Affiliation(s)
- Keishi Shintomi
- Chromosome Dynamics Laboratory, RIKEN, Wako 351-0198, Saitama, Japan
| |
Collapse
|
5
|
Shintomi K, Hirano T. Guiding functions of the C-terminal domain of topoisomerase IIα advance mitotic chromosome assembly. Nat Commun 2021; 12:2917. [PMID: 34006877 PMCID: PMC8131626 DOI: 10.1038/s41467-021-23205-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/20/2021] [Indexed: 12/21/2022] Open
Abstract
Topoisomerase II (topo II) is one of the six proteins essential for mitotic chromatid reconstitution in vitro. It is not fully understood, however, mechanistically how this enzyme regulates this process. In an attempt to further refine the reconstitution assay, we have found that chromosomal binding of Xenopus laevis topo IIα is sensitive to buffer conditions and depends on its C-terminal domain (CTD). Enzymological assays using circular DNA substrates supports the idea that topo IIα first resolves inter-chromatid entanglements to drive individualization and then generates intra-chromatid entanglements to promote thickening. Importantly, only the latter process requires the CTD. By using frog egg extracts, we also show that the CTD contributes to proper formation of nucleosome-depleted chromatids by competing with a linker histone for non-nucleosomal DNA. Our results demonstrate that topo IIα utilizes its CTD to deliver the enzymatic core to crowded environments created during mitotic chromatid assembly, thereby fine-tuning this process. Topoisomerase IIα (topo IIα) is critical for mitotic chromatid assembly. Here the authors report a refinement of the mitotic chromatid reconstitution assay and provide novel insights into the C-terminal domain (CTD) of topo IIα.
Collapse
Affiliation(s)
| | - Tatsuya Hirano
- Chromosome Dynamics Laboratory, RIKEN, Wako, Saitama, Japan.
| |
Collapse
|
6
|
da Silva EML, Rankin S. Chromosome Cohesion and Condensation in Xenopus Egg Extracts. Cold Spring Harb Protoc 2019; 2019:pdb.prot097121. [PMID: 29475994 PMCID: PMC6571020 DOI: 10.1101/pdb.prot097121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Chromosome structure in both interphase and M-phase cells is strongly influenced by the action of the cohesin and condensin protein complexes. The cohesin complex tethers the identical copies of each chromosome, called sister chromatids, together following DNA replication and promotes normal interphase chromosome structure and gene expression. In contrast, condensin is active largely in M phase and promotes the compaction of individual chromosomes. The Xenopus egg extract system is uniquely suited to analyze the functions of both complexes. Egg extracts, in which the cell cycle state can be manipulated, contain stockpiles of nuclear proteins (including condensin and cohesin) sufficient for the assembly of thousands of nuclei per microliter. Extract prepared from unfertilized eggs is arrested by the presence of cytostatic factor (CSF) in a state with high levels of M-phase kinase activity, but can be stimulated to enter interphase, in which DNA replication occurs spontaneously. For cohesion assays, demembranated sperm nuclei are incubated in interphase extract, where they undergo rapid and synchronous DNA replication and cohesion establishment through the recruitment of proteins and other factors (e.g., nucleotides) from the extract. Sister chromatid cohesion is assessed by then driving the extract into M phase by the addition of fresh CSF-arrested extract. In contrast, because chromosome condensation occurs spontaneously in M-phase extracts, sperm nuclei are added directly to CSF extracts to assay condensation.
Collapse
Affiliation(s)
- Eulália M L da Silva
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Susannah Rankin
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104;
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|
7
|
Abstract
The mitotic chromosome, which is composed of a pair of sister chromatids, is a large macromolecular assembly that ensures faithful transmission of genetic information into daughter cells. Despite its fundamental importance, how a nucleosome fiber is folded and assembled into a large-scale chromatid structure remains poorly understood. To address this question, we have established a biochemically tractable system in which mitotic chromatids can be reconstituted in vitro by mixing a simple substrate (sperm nucleus) and a limited number of purified factors. The minimum set of required factors includes core histones, three histone chaperones, topoisomerase II, and condensin I. In this article, we describe a set of protocols for the preparation of key reagents and the setup of reconstitution reactions. We believe that this classical approach of biochemical reconstitution will be of great help to dissect the mechanisms of action of individual factors during mitotic chromatid assembly and to assess the contribution of nucleosome dynamics to this process from a fresh angle. © 2018 by John Wiley & Sons, Inc.
Collapse
|
8
|
Shintomi K, Hirano T. Mitotic Chromosome Assembly In Vitro: Functional Cross Talk between Nucleosomes and Condensins. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 82:157-164. [PMID: 29118204 DOI: 10.1101/sqb.2017.82.033639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The mitotic chromosome is a macromolecular assembly that ensures error-free transmission of the genome during cell division. It has long been a big mystery how long stretches of DNA might be folded into rod-shaped chromosomes or how such an elaborate process might be accomplished at a mechanistic level. Cell-free extracts made from frog eggs offer a unique opportunity to address these questions by enabling mitotic chromosomes to be assembled in a test tube. Moreover, the core part of the chromosome assembly reaction can now be reconstituted with a limited number of purified factors. A combination of these in vitro assays makes it possible not only to prepare a complete list of proteins required for chromosome assembly but also to dissect functions of individual proteins and their cooperation with unparalleled clarity. Emerging lines of evidence underscore the paramount importance of condensins in building mitotic chromosomes and shed new light on the functional cross talk between nucleosomes and condensins in this process.
Collapse
Affiliation(s)
- Keishi Shintomi
- Chromosome Dynamics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - Tatsuya Hirano
- Chromosome Dynamics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| |
Collapse
|
9
|
Shintomi K, Inoue F, Watanabe H, Ohsumi K, Ohsugi M, Hirano T. Mitotic chromosome assembly despite nucleosome depletion in Xenopus egg extracts. Science 2017; 356:1284-1287. [PMID: 28522692 DOI: 10.1126/science.aam9702] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 05/08/2017] [Indexed: 12/23/2022]
Abstract
The nucleosome is the fundamental structural unit of eukaryotic chromatin. During mitosis, duplicated nucleosome fibers are organized into a pair of rod-shaped structures (chromatids) within a mitotic chromosome. However, it remains unclear whether nucleosome assembly is indeed an essential prerequisite for mitotic chromosome assembly. We combined mouse sperm nuclei and Xenopus cell-free egg extracts depleted of the histone chaperone Asf1 and found that chromatid-like structures could be assembled even in the near absence of nucleosomes. The resultant "nucleosome-depleted" chromatids contained discrete central axes positive for condensins, although they were more fragile than normal nucleosome-containing chromatids. Combinatorial depletion experiments underscored the central importance of condensins in mitotic chromosome assembly, which sheds light on their functional cross-talk with nucleosomes in this process.
Collapse
Affiliation(s)
- Keishi Shintomi
- Chromosome Dynamics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - Fukashi Inoue
- Department of Life Science, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan.,TAK-Circulator Corporation, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroshi Watanabe
- Department of Life Science, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Keita Ohsumi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Miho Ohsugi
- Department of Life Science, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Tatsuya Hirano
- Chromosome Dynamics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan.
| |
Collapse
|