1
|
Batool SM, Hsia T, Beecroft A, Lewis B, Ekanayake E, Rosenfeld Y, Escobedo AK, Gamblin AS, Rawal S, Cote RJ, Watson M, Wong DTW, Patel AA, Skog J, Papadopoulos N, Bettegowda C, Castro CM, Lee H, Srivastava S, Carter BS, Balaj L. Extrinsic and intrinsic preanalytical variables affecting liquid biopsy in cancer. Cell Rep Med 2023; 4:101196. [PMID: 37725979 PMCID: PMC10591035 DOI: 10.1016/j.xcrm.2023.101196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 12/01/2022] [Accepted: 08/22/2023] [Indexed: 09/21/2023]
Abstract
Liquid biopsy, through isolation and analysis of disease-specific analytes, has evolved as a promising tool for safe and minimally invasive diagnosis and monitoring of tumors. It also has tremendous utility as a companion diagnostic allowing detection of biomarkers in a range of cancers (lung, breast, colon, ovarian, brain). However, clinical implementation and validation remains a challenge. Among other stages of development, preanalytical variables are critical in influencing the downstream cellular and molecular analysis of different analytes. Although considerable progress has been made to address these challenges, a comprehensive assessment of the impact on diagnostic parameters and consensus on standardized and optimized protocols is still lacking. Here, we summarize and critically evaluate key variables in the preanalytical stage, including study population selection, choice of biofluid, sample handling and collection, processing, and storage. There is an unmet need to develop and implement comprehensive preanalytical guidelines on the optimal practices and methodologies.
Collapse
Affiliation(s)
| | - Tiffaney Hsia
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandra Beecroft
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Brian Lewis
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Emil Ekanayake
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yulia Rosenfeld
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ana K Escobedo
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Austin S Gamblin
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Siddarth Rawal
- Washington University School of Medicine, St. Louis, MO, USA; Circulogix Inc., St. Louis, MO, USA
| | - Richard J Cote
- Washington University School of Medicine, St. Louis, MO, USA; Circulogix Inc., St. Louis, MO, USA
| | - Mark Watson
- Washington University School of Medicine, St. Louis, MO, USA
| | - David T W Wong
- University of California Los Angeles, Los Angeles, CA, USA
| | | | - Johan Skog
- Exosome Diagnostics, Waltham, MA 02451, USA
| | | | | | - Cesar M Castro
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hakho Lee
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sudhir Srivastava
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | - Bob S Carter
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Leonora Balaj
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Chong A, Tolomeo S, Xiong Y, Angeles D, Cheung M, Becker B, Lai PS, Lei Z, Malavasi F, Tang Q, Chew SH, Ebstein RP. Blending oxytocin and dopamine with everyday creativity. Sci Rep 2021; 11:16185. [PMID: 34376746 PMCID: PMC8355306 DOI: 10.1038/s41598-021-95724-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 07/12/2021] [Indexed: 11/09/2022] Open
Abstract
Converging evidence suggests that oxytocin (OT) is associated with creative thinking (CT) and that release of OT depends on ADP ribosyl-cyclases (CD38 and CD157). Neural mechanisms of CT and OT show a strong association with dopaminergic (DA) pathways, yet the link between CT and CD38, CD157, dopamine receptor D2 (DRD2) and catechol-O-methyltransferase (COMT) peripheral gene expression remain inconclusive, thus limiting our understanding of the neurobiology of CT. To address this issue, two principal domains of CT, divergent thinking (AUT), were assessed. In men, both AUT is associated with gene expression of CD38, CD157, and their interaction CD38 × CD157. There were no significant associations for DA expression (DRD2, COMT, DRD2 × COMT) on both CT measures. However, analysis of the interactions of OT and DA systems reveal significant interactions for AUT in men. The full model explained a sizable 39% of the variance in females for the total CT score. The current findings suggest that OT and DA gene expression contributed significantly to cognition and CT phenotype. This provides the first empirical foundation of a more refined understanding of the molecular landscape of CT.
Collapse
Affiliation(s)
- Anne Chong
- Department of Psychology, National University of Singapore, Singapore, Singapore
| | - Serenella Tolomeo
- Department of Psychology, National University of Singapore, Singapore, Singapore
| | - Yue Xiong
- Department of Psychology, National University of Singapore, Singapore, Singapore
| | - Dario Angeles
- Laboratory of Human Genetics, Department of Paediatrics, National University of Singapore, Singapore, Singapore
| | - Mike Cheung
- Department of Psychology, National University of Singapore, Singapore, Singapore
| | - Benjamin Becker
- MOE Key Laboratory for Neuroinformation, The Clinical Hospital of the Chengdu Brain Science Institute, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Poh San Lai
- Laboratory of Human Genetics, Department of Paediatrics, National University of Singapore, Singapore, Singapore
| | - Zhen Lei
- CCBEF (China Center for Behavior Economics and Finance), Southwestern University of Finance and Economics (SWUFE), Chengdu, China
| | - Fabio Malavasi
- Department of Medical Science, University of Torino, Turin, Italy
- Fondazione Ricerca Molinette, Turin, Italy
| | - Qianzi Tang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, China
| | - Soo Hong Chew
- CCBEF (China Center for Behavior Economics and Finance), Southwestern University of Finance and Economics (SWUFE), Chengdu, China
- Department of Economics, National University of Singapore, Singapore, Singapore
| | - Richard P Ebstein
- CCBEF (China Center for Behavior Economics and Finance), Southwestern University of Finance and Economics (SWUFE), Chengdu, China.
- College of Economics and Management, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
3
|
Khurshid Z, Warsi I, Moin SF, Slowey PD, Latif M, Zohaib S, Zafar MS. Biochemical analysis of oral fluids for disease detection. Adv Clin Chem 2020; 100:205-253. [PMID: 33453866 DOI: 10.1016/bs.acc.2020.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The field of diagnostics using invasive blood testing represents the majority of diagnostic tests used as part of routine health monitoring. The relatively recent introduction of salivary diagnostics has lead to a major paradigm shift in diagnostic analyses. Additionally, in this era of big data, oral fluid testing has shown promising outcomes in a number of fields, particularly the areas of genomics, microbiomics, proteomics, metabolomics, and transcriptomics. Despite the analytical challenges involved in the interpretation of large datasets generated from biochemical studies involving bodily fluids, including saliva, many studies have identified novel oral biomarkers for diagnosing oral and systemic diseases. In this regard, oral biofluids, including saliva, gingival crevicular fluid (GCF), peri-implant crevicular fluid (PICF), dentinal tubular fluid (DTF), are now attracting increasing attention due to their important attributes, such as noninvasive sampling, easy handling, low cost, and more accurate diagnosis of oral diseases. Recently, the utilization of salivary diagnostics to evaluate systemic diseases and monitor general health has increased in popularity among clinicians. Saliva contains a wide range of protein, DNA and RNA biomarkers, which assist in the diagnosis of multiple diseases and conditions, including cancer, cardiovascular diseases (CVD), auto-immune and degenerative diseases, respiratory infections, oral diseases, and microbial (viral, bacterial and fungal) diseases. Moreover, due to its noninvasive nature and ease-of-adoption by children, it is now being used in mass screening programs, oral health-related studies and clinical trials in support of the development of therapeutic agents. The recent advent of highly sensitive technologies, such as next-generation sequencing, mass spectrometry, highly sensitives ELISAs, and homogeneous immunoassays, suggests that even small quantities of salivary biomarkers are able to be assayed accurately, providing opportunities for the development of many future diagnostic applications (including emerging technologies, such as point-of-care and rapid molecular technologies). The present article explores the omics and biochemical compositions of various oral biofluids with important value in diagnostics and monitoring.
Collapse
Affiliation(s)
- Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Ibrahim Warsi
- Masters in Medical Science and Clinical Investigation, Harvard Medical School, Boston, MA, United States
| | - Syed F Moin
- National Center for Proteomics, University of Karachi, Karachi, Pakistan
| | - Paul D Slowey
- Oasis Diagnostics® Corporation, Vancouver, WA, United States
| | - Muhammad Latif
- Centre for Genetics and Inherited Diseases (CGID), Taibah University, Al Madinah Al Munawwarah, Saudi Arabia
| | - Sana Zohaib
- Department of Biomedical Engineering, College of Engineering, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Muhammad S Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah Al Munawwarah, Saudi Arabia; Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad, Pakistan.
| |
Collapse
|