1
|
Li Y, Liu C, Wang Y, Li M, Zou S, Hu X, Chen Z, Li M, Ma C, Obi CJ, Zhou X, Zou Y, Tang M. Urban wild bee well-being revealed by gut metagenome data: A mason bee model. INSECT SCIENCE 2025. [PMID: 40287860 DOI: 10.1111/1744-7917.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/18/2025] [Accepted: 03/07/2025] [Indexed: 04/29/2025]
Abstract
Wild bees are ecologically vital but increasingly threatened by anthropogenic activities, leading to uncertain survival and health outcomes in urban environments. The gut microbiome contains features indicating host health and reflecting long-term evolutionary adaptation and acute reactions to real-time stressors. Moving beyond bacteria, we propose a comprehensive analysis integrating diet, bacteriome, virome, resistome, and their association to understand the survival status of urban lives better. We conducted a study on mason bees (Osmia excavata) across 10 urban agricultural sites in Suzhou, China, using shotgun gut metagenome sequencing for data derived from total gut DNA. Our findings revealed that most ingested pollen originated from Brassica crops and the unexpected garden tree Plantanus, indicating that floral resources at the 10 sites supported Osmia but with limited plant diversity. Varied city landscapes revealed site-specific flowers that all contributed to Osmia sustenance. The gut bacterial community, dominated by Gammaproteobacteria, showed remarkable structural stability across 8 sites but suggested perturbations at 2 sites. Antibiotic resistance gene profiles highly varied across 10 sites with prevalent unclassified drug classes, highlighting environmental threats to both bees and humans. The virome analysis identified honeybee pathogens, suggesting potential virus spillover. Many unknown bacteriophages were detected, some of which targeted the core gut bacteria, underscoring their role in maintaining gut homeostasis. These multifaceted metagenomic insights hold the potential to predict bee health and identify environmental threats, thereby guiding probiotic development and city management for effective bee conservation.
Collapse
Affiliation(s)
- Yiran Li
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province, China
| | - Chengweiran Liu
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province, China
| | - Yiran Wang
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province, China
| | - Muhan Li
- Department of Health and Environmental Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province, China
| | - Shasha Zou
- Department of Health and Environmental Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province, China
| | - Xingyu Hu
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province, China
| | - Zhiwei Chen
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province, China
| | - Mingrui Li
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province, China
| | - Changsheng Ma
- Department of Health and Environmental Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province, China
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Chinonye Jennifer Obi
- Department of Health and Environmental Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province, China
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yi Zou
- Department of Health and Environmental Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province, China
| | - Min Tang
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province, China
| |
Collapse
|
2
|
Lenka J, González-Tortuero E, Kuba S, Ferry N. Bacterial community profiling and identification of bacteria with lignin-degrading potential in different gut segments of African palm weevil larvae ( Rhynchophorus phoenicis). Front Microbiol 2025; 15:1401965. [PMID: 39831119 PMCID: PMC11739302 DOI: 10.3389/fmicb.2024.1401965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/12/2024] [Indexed: 01/22/2025] Open
Abstract
The microbiota within the guts of insects plays beneficial roles for their hosts, such as facilitating digestion and extracting energy from their diet. The African palm weevil (APW) lives within and feeds on the high lignin-containing trunk of palm trees; therefore, their guts could harbour a large community of lignin-degrading microbes. In this study, we aimed to explore the bacterial community within the gut of the APW larvae, specifically with respect to the potential for lignin degradation in various gut segments as a first step to determining the viability of mining bacterial lignin-degrading enzymes for the bioconversion of lignocellulosic biomass to biofuels and biomaterials. Bacterial metagenomic DNA was extracted from the foregut, midgut, and hindgut of larvae of the APW, and the V3-V4 hypervariable region of the 16S rRNA gene was sequenced using the Illumina MiSeq platform. The generated data were analysed and taxonomically classified to identify the different bacterial phylotypes within the gut community cumulatively and per gut segment. We then determined the presence, diversity, and abundance of bacteria associated with lignin degradation within each larval gut compartment as a basis for suggesting the gut segment(s) where lignin degradation occurs the most. All sequences were classified and belonged to the bacterial kingdom. Firmicutes (54.3%) and Proteobacteria (42.5%) were the most dominant phyla within the gut, followed distantly by Bacteroidota (1.7%) and Actinobacteriota (1.4%). Enterococcus, Levilactobacillus, Lactococcus, Shimwellia, Megasphaera, Klebsiella, Pectinatus, Salmonella, Lelliotia, and Enterobacter constituted the most abundant genera found across all gut segments. The foregut and midgut had many similar genera, whilst the hindgut appeared unique. Overall, 29.5% of total gut bacteria comprising 21 genera were lignin degraders found predominantly in the Firmicutes and Proteobacteria phyla (56.8 and 39.5%, respectively), then moderately in Actinobacteriota (2.5%) and Bacteroidota (1.1%). The most abundant ligninolytic genera were Levilactobacillus (46.4%), Klebsiella (22.9%), Enterobacter (10.7%), Lactiplantibacillus (5.9%), Citrobacter (2.2%), Corynebacterium (1.8%), Paucilactobacillus (1.8%), Serratia (1.5%), Bacteroides (1.1%), and Leucobacter (1.0%) found in different amounts in different gut compartments. The foregut had the most diverse and highest abundance of lignin-degrading phylotypes, and we present reasons that point to the foregut as the main location for the depolymerization of lignin in the APW larval gut.
Collapse
Affiliation(s)
- Jessica Lenka
- School of Science, Engineering and Environment, University of Salford, Salford, United Kingdom
- School of Life Sciences, Faculty of Natural Sciences, Keele University, Staffordshire, United Kingdom
| | - Enrique González-Tortuero
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Shweta Kuba
- School of Health and Life Sciences, Teesside University, Middlesborough, United Kingdom
| | - Natalie Ferry
- School of Science, Engineering and Environment, University of Salford, Salford, United Kingdom
| |
Collapse
|
3
|
Dionisi HM, Lozada M, Campos E. Diversity of GH51 α-L-arabinofuranosidase homolog sequences from subantarctic intertidal sediments. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01382-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
4
|
Dai R, Ma X, Dingkao R, Huang C, La Y, Li X, Ma X, Wu X, Chu M, Guo X, Pei J, Yan P, Liang C. Effects of dietary crude protein levels in the concentrate supplement after grazing on rumen microbiota and metabolites by using metagenomics and metabolomics in Jersey-yak. Front Microbiol 2023; 14:1124917. [PMID: 37200912 PMCID: PMC10185794 DOI: 10.3389/fmicb.2023.1124917] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/13/2023] [Indexed: 05/20/2023] Open
Abstract
Introduction The crude protein level in the diet will affect the fermentation parameters, microflora, and metabolites in the rumen of ruminants. It is of great significance to study the effect of crude protein levels in supplementary diet on microbial community and metabolites for improving animal growth performance. At present, the effects of crude protein level in supplementary diet on rumen fermentation parameters, microbial community, and metabolites of Jersey-Yak (JY) are still unclear. Methods The purpose of this experiment was to study the appropriate crude protein level in the diet of JY. The rumen fermentation indexes (volatile fatty acids and pH) were determined by supplementary diets with crude protein levels of 15.16 and 17.90%, respectively, and the microbial community and metabolites of JYs were analyzed by non-target metabonomics and metagenome sequencing technology, and the changes of rumen fermentation parameters, microbial flora, and metabolites in the three groups and their interactions were studied. Results and Discussion The crude protein level in the supplementary diet had significant effects on pH, valeric acid, and the ratio of acetic acid to propionic acid (p < 0.05). The protein level had no significant effect on the dominant microflora at the phylum level (p > 0.05), and all three groups were Bacteroides and Firmicutes. The results of metabolite analysis showed that the crude protein level of supplementary diet significantly affected the metabolic pathways such as Bile secretion and styrene degradation (p < 0.05), and there were different metabolites between the LP group and HP group, and these different metabolites were related to the dominant microbial to some extent. To sum up, in this experiment, the effects of crude protein level in supplementary diet on rumen microorganisms and metabolites of JY and their relationship were studied, which provided the theoretical basis for formulating a more scientific and reasonable supplementary diet in the future.
Collapse
Affiliation(s)
- Rongfeng Dai
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Xiaoming Ma
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Renqing Dingkao
- Animal Husbandry Station, Gannan Tibetan Autonomous Prefecture, Gannan, Gansu, China
| | - Chun Huang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Yongfu La
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Xinyi Li
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Xiaoyong Ma
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Jie Pei
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- Ping Yan,
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- *Correspondence: Chunnian Liang,
| |
Collapse
|
5
|
Vitorino IR, Klimek D, Calusinska M, Lobo-da-Cunha A, Vasconcelos V, Lage OM. Stieleria sedimenti sp. nov., a Novel Member of the Family Pirellulaceae with Antimicrobial Activity Isolated in Portugal from Brackish Sediments. Microorganisms 2022; 10:2151. [PMID: 36363743 PMCID: PMC9692418 DOI: 10.3390/microorganisms10112151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 09/23/2023] Open
Abstract
The phylum Planctomycetota is known for having uncommon biological features. Recently, biotechnological applications of its members have started to be explored, namely in the genus Stieleria. Here, we formally describe a novel Stieleriaisolate designated as strain ICT_E10.1T, obtained from sediments collected in the Tagus estuary (Portugal). Strain ICT_E10.1T is pink-pigmented, spherical to ovoid in shape, and 1.7 µm ± 0.3 × 1.4 µm ± 0.3 in size. Cells cluster strongly in aggregates or small chains, divide by budding, and have prominent fimbriae. Strain ICT_E10.1T is heterotrophic and aerobic. Growth occurs from 20 to 30 °C, from 0.5 to 3% (w/v) NaCl, and from pH 6.5 to 11.0. The analysis of the 16S rRNA gene sequence placed strain ICT_E10.1T into the genus Stieleria with Stieleria neptunia Enr13T as the closest validly described relative. The genome size is 9,813,311 bp and the DNA G+C content is 58.8 mol%. Morphological, physiological, and genomic analyses support the separation of this strain into a novel species, for which we propose the name Stieleria sedimenti represented by strain ICT_E10.1T as the type of strain (=CECT 30514T= DSM 113784T). Furthermore, this isolate showed biotechnological potential by displaying relevant biosynthetic gene clusters and potent activity against Staphylococcus aureus.
Collapse
Affiliation(s)
- Inês Rosado Vitorino
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
- CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Dominika Klimek
- The Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L-4422 Belvaux, Luxemburg
- The Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, 2 Avenue de l’Université, L-4365 Esch-sur-Alzette, Luxembourg
| | - Magdalena Calusinska
- The Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L-4422 Belvaux, Luxemburg
| | - Alexandre Lobo-da-Cunha
- Laboratório de Biologia Celular, Instituto de Ciências Biomédicas Abel Salazar, ICBAS, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vítor Vasconcelos
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
- CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Olga Maria Lage
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
- CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| |
Collapse
|
6
|
Li Z, Huang X, Guo Y, Zhang C, Yang L, Du X, Ni H, Wang X, Zhu Y. Toward Understanding the Alginate Catabolism in Microbulbifer sp. ALW1 by Proteomics Profiling. Front Bioeng Biotechnol 2022; 10:829428. [PMID: 35372316 PMCID: PMC8967155 DOI: 10.3389/fbioe.2022.829428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/31/2022] [Indexed: 11/18/2022] Open
Abstract
The bacterial strain of Microbulbifer sp. ALW1 has demonstrated visible ability of degrading the cell wall of Laminaria japonica, and biochemical characterization has been performed on some individual enzymes to elucidate its genetic basis. However, it still remains elusive how strain ALW1 successfully breaks down the major cell wall component alginate polysaccharide and colonizes on its marine host. In this study, a mass spectrometry-based quantitative analysis of the extracellular and intracellular proteomes was introduced to elucidate the alginate degradation pathway in ALW1 strain. Mass spectrometry and biochemical assays indicated that strain ALW1 could effectively degrade alginate polysaccharide into disaccharides and trisaccharides within 12 h. Proteome analysis identified 156 and 1,047 proteins exclusively localized in extracellular and intracellular compartments, respectively, with 1,086 protein identities of dual localization. Functional annotation of the identified proteins suggested the involvement of diverse catalytic enzymes and non-catalytic molecules for the cleavage and metabolism of alginate polysaccharide. A simplified pathway was constructed to demonstrate the extracellular digestion, active transport, and intracellular conversion of alginate polysaccharide and its fragmented oligosaccharides, casting a picture of genetic loci controlling alginate catabolism by ALW1 strain. This study aims to provide a guide for utilization and genetic manipulation of the bacterial strain ALW1 for efficient alginate oligosaccharides production by fermentation.
Collapse
Affiliation(s)
- Zhipeng Li
- College of Ocean Food and Biology Engineering, Jimei University, Xiame, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Xiaoyi Huang
- College of Ocean Food and Biology Engineering, Jimei University, Xiame, China
| | - Yuxi Guo
- College of Ocean Food and Biology Engineering, Jimei University, Xiame, China
| | - Chenghao Zhang
- College of Ocean Food and Biology Engineering, Jimei University, Xiame, China
| | - Liang Yang
- College of Ocean Food and Biology Engineering, Jimei University, Xiame, China
| | - Xiping Du
- College of Ocean Food and Biology Engineering, Jimei University, Xiame, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Hui Ni
- College of Ocean Food and Biology Engineering, Jimei University, Xiame, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Xuchu Wang
- Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Ministry of Education, Hainan Normal University, Haikou, China
- *Correspondence: Xuchu Wang, ; Yanbing Zhu,
| | - Yanbing Zhu
- College of Ocean Food and Biology Engineering, Jimei University, Xiame, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, China
- *Correspondence: Xuchu Wang, ; Yanbing Zhu,
| |
Collapse
|
7
|
Chettri D, Verma AK, Verma AK. Innovations in CAZyme gene diversity and its modification for biorefinery applications. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 28:e00525. [PMID: 32963975 PMCID: PMC7490808 DOI: 10.1016/j.btre.2020.e00525] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/04/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
For sustainable growth, concept of biorefineries as recourse to the "fossil derived" energy source is important. Here, the Carbohydrate Active enZymes (CAZymes) play decisive role in generation of biofuels and related sugar-based products utilizing lignocellulose as a carbon source. Given their industrial significance, extensive studies on the evolution of CAZymes have been carried out. Various bacterial and fungal organisms have been scrutinized for the development of CAZymes, where advance techniques for strain enhancement such as CRISPR and analysis of specific expression systems have been deployed. Specific Omic-based techniques along with protein engineering have been adopted to unearth novel CAZymes and improve applicability of existing enzymes. In-Silico computational research and functional annotation of new CAZymes to synergy experiments are being carried out to devise cocktails of enzymes for use in biorefineries. Thus, with the establishment of these technologies, increased diversity of CAZymes with broad span of functions and applications is seen.
Collapse
|
8
|
Rumen metaproteomics: Closer to linking rumen microbial function to animal productivity traits. Methods 2020; 186:42-51. [PMID: 32758682 DOI: 10.1016/j.ymeth.2020.07.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/12/2020] [Accepted: 07/27/2020] [Indexed: 12/28/2022] Open
Abstract
The rumen microbiome constitutes a dense and complex mixture of anaerobic bacteria, archaea, protozoa, virus and fungi. Collectively, rumen microbial populations interact closely in order to degrade and ferment complex plant material into nutrients for host metabolism, a process which also produces other by-products, such as methane gas. Our understanding of the rumen microbiome and its functions are of both scientific and industrial interest, as the metabolic functions are connected to animal health and nutrition, but at the same time contribute significantly to global greenhouse gas emissions. While many of the major microbial members of the rumen microbiome are acknowledged, advances in modern culture-independent meta-omic techniques, such as metaproteomics, enable deep exploration into active microbial populations involved in essential rumen metabolic functions. Meaningful and accurate metaproteomic analyses are highly dependent on representative samples, precise protein extraction and fractionation, as well as a comprehensive and high-quality protein sequence database that enables precise protein identification and quantification. This review focuses on the application of rumen metaproteomics, and its potential towards understanding the complex rumen microbiome and its metabolic functions. We present and discuss current methods in sample handling, protein extraction and data analysis for rumen metaproteomics, and finally emphasize the potential of (meta)genome-integrated metaproteomics for accurate reconstruction of active microbial populations in the rumen.
Collapse
|
9
|
Bremges A, Fritz A, McHardy AC. CAMITAX: Taxon labels for microbial genomes. Gigascience 2020; 9:giz154. [PMID: 31909794 PMCID: PMC6946028 DOI: 10.1093/gigascience/giz154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 11/23/2019] [Accepted: 12/10/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The number of microbial genome sequences is increasing exponentially, especially thanks to recent advances in recovering complete or near-complete genomes from metagenomes and single cells. Assigning reliable taxon labels to genomes is key and often a prerequisite for downstream analyses. FINDINGS We introduce CAMITAX, a scalable and reproducible workflow for the taxonomic labelling of microbial genomes recovered from isolates, single cells, and metagenomes. CAMITAX combines genome distance-, 16S ribosomal RNA gene-, and gene homology-based taxonomic assignments with phylogenetic placement. It uses Nextflow to orchestrate reference databases and software containers and thus combines ease of installation and use with computational reproducibility. We evaluated the method on several hundred metagenome-assembled genomes with high-quality taxonomic annotations from the TARA Oceans project, and we show that the ensemble classification method in CAMITAX improved on all individual methods across tested ranks. CONCLUSIONS While we initially developed CAMITAX to aid the Critical Assessment of Metagenome Interpretation (CAMI) initiative, it evolved into a comprehensive software package to reliably assign taxon labels to microbial genomes. CAMITAX is available under Apache License 2.0 at https://github.com/CAMI-challenge/CAMITAX.
Collapse
Affiliation(s)
- Andreas Bremges
- Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Adrian Fritz
- Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Alice C McHardy
- Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| |
Collapse
|
10
|
Kunath BJ, Delogu F, Naas AE, Arntzen MØ, Eijsink VGH, Henrissat B, Hvidsten TR, Pope PB. From proteins to polysaccharides: lifestyle and genetic evolution of Coprothermobacter proteolyticus. THE ISME JOURNAL 2019; 13:603-617. [PMID: 30315317 PMCID: PMC6461833 DOI: 10.1038/s41396-018-0290-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/11/2018] [Accepted: 09/19/2018] [Indexed: 11/29/2022]
Abstract
Microbial communities that degrade lignocellulosic biomass are typified by high levels of species- and strain-level complexity, as well as synergistic interactions between both cellulolytic and non-cellulolytic microorganisms. Coprothermobacter proteolyticus frequently dominates thermophilic, lignocellulose-degrading communities with wide geographical distribution, which is in contrast to reports that it ferments proteinaceous substrates and is incapable of polysaccharide hydrolysis. Here we deconvolute a highly efficient cellulose-degrading consortium (SEM1b) that is co-dominated by Clostridium (Ruminiclostridium) thermocellum and multiple heterogenic strains affiliated to C. proteolyticus. Metagenomic analysis of SEM1b recovered metagenome-assembled genomes (MAGs) for each constituent population, whereas in parallel two novel strains of C. proteolyticus were successfully isolated and sequenced. Annotation of all C. proteolyticus genotypes (two strains and one MAG) revealed their genetic acquisition of carbohydrate-active enzymes (CAZymes), presumably derived from horizontal gene transfer (HGT) events involving polysaccharide-degrading Firmicutes or Thermotogae-affiliated populations that are historically co-located. HGT material included a saccharolytic operon, from which a CAZyme was biochemically characterized and demonstrated hydrolysis of multiple hemicellulose polysaccharides. Finally, temporal genome-resolved metatranscriptomic analysis of SEM1b revealed expression of C. proteolyticus CAZymes at different SEM1b life stages as well as co-expression of CAZymes from multiple SEM1b populations, inferring deeper microbial interactions that are dedicated toward community degradation of cellulose and hemicellulose. We show that C. proteolyticus, a ubiquitous population, consists of closely related strains that have adapted via HGT to presumably degrade both oligo- and longer polysaccharides present in decaying plants and microbial cell walls, thus explaining its dominance in thermophilic anaerobic digesters on a global scale.
Collapse
Affiliation(s)
- Benoit J Kunath
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, 1432, Norway
| | - Francesco Delogu
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, 1432, Norway
| | - Adrian E Naas
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, 1432, Norway
| | - Magnus Ø Arntzen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, 1432, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, 1432, Norway
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, F-13288, France
| | - Torgeir R Hvidsten
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, 1432, Norway
| | - Phillip B Pope
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, 1432, Norway.
| |
Collapse
|
11
|
Fritz A, Hofmann P, Majda S, Dahms E, Dröge J, Fiedler J, Lesker TR, Belmann P, DeMaere MZ, Darling AE, Sczyrba A, Bremges A, McHardy AC. CAMISIM: simulating metagenomes and microbial communities. MICROBIOME 2019; 7:17. [PMID: 30736849 PMCID: PMC6368784 DOI: 10.1186/s40168-019-0633-6] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 01/21/2019] [Indexed: 05/11/2023]
Abstract
BACKGROUND Shotgun metagenome data sets of microbial communities are highly diverse, not only due to the natural variation of the underlying biological systems, but also due to differences in laboratory protocols, replicate numbers, and sequencing technologies. Accordingly, to effectively assess the performance of metagenomic analysis software, a wide range of benchmark data sets are required. RESULTS We describe the CAMISIM microbial community and metagenome simulator. The software can model different microbial abundance profiles, multi-sample time series, and differential abundance studies, includes real and simulated strain-level diversity, and generates second- and third-generation sequencing data from taxonomic profiles or de novo. Gold standards are created for sequence assembly, genome binning, taxonomic binning, and taxonomic profiling. CAMSIM generated the benchmark data sets of the first CAMI challenge. For two simulated multi-sample data sets of the human and mouse gut microbiomes, we observed high functional congruence to the real data. As further applications, we investigated the effect of varying evolutionary genome divergence, sequencing depth, and read error profiles on two popular metagenome assemblers, MEGAHIT, and metaSPAdes, on several thousand small data sets generated with CAMISIM. CONCLUSIONS CAMISIM can simulate a wide variety of microbial communities and metagenome data sets together with standards of truth for method evaluation. All data sets and the software are freely available at https://github.com/CAMI-challenge/CAMISIM.
Collapse
Affiliation(s)
- Adrian Fritz
- Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, 38124 Germany
| | - Peter Hofmann
- Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, 38124 Germany
- Formerly Department of Algorithmic Bioinformatics, Heinrich-Heine University Düsseldorf, Düsseldorf, 40225 Germany
| | - Stephan Majda
- Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, 38124 Germany
- Formerly Department of Algorithmic Bioinformatics, Heinrich-Heine University Düsseldorf, Düsseldorf, 40225 Germany
| | - Eik Dahms
- Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, 38124 Germany
- Formerly Department of Algorithmic Bioinformatics, Heinrich-Heine University Düsseldorf, Düsseldorf, 40225 Germany
| | - Johannes Dröge
- Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, 38124 Germany
- Formerly Department of Algorithmic Bioinformatics, Heinrich-Heine University Düsseldorf, Düsseldorf, 40225 Germany
| | - Jessika Fiedler
- Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, 38124 Germany
- Formerly Department of Algorithmic Bioinformatics, Heinrich-Heine University Düsseldorf, Düsseldorf, 40225 Germany
| | - Till R. Lesker
- Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, 38124 Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Braunschweig, 38124 Germany
| | - Peter Belmann
- Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, 38124 Germany
- Center for Biotechnology and Faculty of Technology, Bielefeld University, Bielefeld, 33615 Germany
| | - Matthew Z. DeMaere
- The ithree institute, University of Technology Sydney, Sydney NSW, 2007 Australia
| | - Aaron E. Darling
- The ithree institute, University of Technology Sydney, Sydney NSW, 2007 Australia
| | - Alexander Sczyrba
- Center for Biotechnology and Faculty of Technology, Bielefeld University, Bielefeld, 33615 Germany
| | - Andreas Bremges
- Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, 38124 Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Braunschweig, 38124 Germany
| | - Alice C. McHardy
- Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, 38124 Germany
- Formerly Department of Algorithmic Bioinformatics, Heinrich-Heine University Düsseldorf, Düsseldorf, 40225 Germany
| |
Collapse
|
12
|
Nelson CE, Attia MA, Rogowski A, Morland C, Brumer H, Gardner JG. Comprehensive functional characterization of the glycoside hydrolase family 3 enzymes from Cellvibrio japonicus reveals unique metabolic roles in biomass saccharification. Environ Microbiol 2017; 19:5025-5039. [PMID: 29052930 DOI: 10.1111/1462-2920.13959] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/27/2017] [Accepted: 10/08/2017] [Indexed: 12/16/2022]
Abstract
Lignocellulose degradation is central to the carbon cycle and renewable biotechnologies. The xyloglucan (XyG), β(1→3)/β(1→4) mixed-linkage glucan (MLG) and β(1→3) glucan components of lignocellulose represent significant carbohydrate energy sources for saprophytic microorganisms. The bacterium Cellvibrio japonicus has a robust capacity for plant polysaccharide degradation, due to a genome encoding a large contingent of Carbohydrate-Active enZymes (CAZymes), many of whose specific functions remain unknown. Using a comprehensive genetic and biochemical approach, we have delineated the physiological roles of the four C. japonicus glycoside hydrolase family 3 (GH3) members on diverse β-glucans. Despite high protein sequence similarity and partially overlapping activity profiles on disaccharides, these β-glucosidases are not functionally equivalent. Bgl3A has a major role in MLG and sophorose utilization, and supports β(1→3) glucan utilization, while Bgl3B underpins cellulose utilization and supports MLG utilization. Bgl3C drives β(1→3) glucan utilization. Finally, Bgl3D is the crucial β-glucosidase for XyG utilization. This study not only sheds the light on the metabolic machinery of C. japonicus, but also expands the repertoire of characterized CAZymes for future deployment in biotechnological applications. In particular, the precise functional analysis provided here serves as a reference for informed bioinformatics on the genomes of other Cellvibrio and related species.
Collapse
Affiliation(s)
- Cassandra E Nelson
- Department of Biological Sciences, University of Maryland, Baltimore County, MD, USA
| | - Mohamed A Attia
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada.,Department of Chemistry, University of British Columbia, Vancouver, Canada
| | - Artur Rogowski
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Carl Morland
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada.,Department of Chemistry, University of British Columbia, Vancouver, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada.,Department of Botany, University of British Columbia, Vancouver, Canada
| | - Jeffrey G Gardner
- Department of Biological Sciences, University of Maryland, Baltimore County, MD, USA
| |
Collapse
|
13
|
Stolze Y, Bremges A, Maus I, Pühler A, Sczyrba A, Schlüter A. Targeted in situ metatranscriptomics for selected taxa from mesophilic and thermophilic biogas plants. Microb Biotechnol 2017; 11:667-679. [PMID: 29205917 PMCID: PMC6011919 DOI: 10.1111/1751-7915.12982] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/23/2017] [Accepted: 10/23/2017] [Indexed: 11/26/2022] Open
Abstract
Biogas production is performed anaerobically by complex microbial communities with key species driving the process. Hence, analyses of their in situ activities are crucial to understand the process. In a previous study, metagenome sequencing and subsequent genome binning for different production‐scale biogas plants (BGPs) resulted in four genome bins of special interest, assigned to the phyla Thermotogae, Fusobacteria, Spirochaetes and Cloacimonetes, respectively, that were genetically analysed. In this study, metatranscriptome sequencing of the same BGP samples was conducted, enabling in situ transcriptional activity determination of these genome bins. For this, mapping of metatranscriptome reads on genome bin sequences was performed providing transcripts per million (TPM) values for each gene. This approach revealed an active sugar‐based metabolism of the Thermotogae and Spirochaetes bins and an active amino acid‐based metabolism of the Fusobacteria and Cloacimonetes bins. The data also hint at syntrophic associations of the four corresponding species with methanogenic Archaea.
Collapse
Affiliation(s)
- Yvonne Stolze
- Center for Biotechnology - CeBiTec, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Andreas Bremges
- Center for Biotechnology - CeBiTec, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany.,Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Irena Maus
- Center for Biotechnology - CeBiTec, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Alfred Pühler
- Center for Biotechnology - CeBiTec, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Alexander Sczyrba
- Center for Biotechnology - CeBiTec, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany.,Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Andreas Schlüter
- Center for Biotechnology - CeBiTec, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| |
Collapse
|