1
|
Banerjee K, Antonello A, Johnson S, Licht A, Rapp A, Miller C. Demonstrating the Effectiveness of an Alternative to Triton X-100 for Detergent-Mediated Viral Inactivation in Biomanufacturing. Biotechnol Bioeng 2025; 122:1087-1095. [PMID: 39907238 DOI: 10.1002/bit.28940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/20/2024] [Accepted: 01/16/2025] [Indexed: 02/06/2025]
Abstract
Detergent-mediated viral inactivation is an important process step for ensuring viral safety of parenteral biotherapeutics, including plasma proteins and monoclonal antibodies (mAb). The conventional Triton X-100 detergent has ecological toxicity concerns and REACH classification that mandate replacement in the biopharmaceutical industry. Criteria for a replacement detergent include viral inactivation efficacy, acceptable safety and biodegradation profile, process removal, and quality suitable for parenteral drug product manufacturing. A non-ionic, C11-15 secondary alcohol ethoxylate, Deviron 13-S9 detergent, has been demonstrated to meet the necessary requirements for detergent performance. Benchmarking studies with Triton X-100 detergent demonstrate comparable performance with a panel of enveloped viruses in multiple matrices, including human IgG, clarified cell culture harvest, and fractionated plasma. Deviron 13-S9 detergent demonstrated viral inactivation efficiency comparable to or better than Triton X-100 detergent, achieving > 5 log reduction values. Critical micelle concentration was determined across different temperatures and media. Deviron 13-S9 detergent was demonstrated to be readily biodegradable according to OECD 301B guidelines. The absence of detergent binding to typical chromatography resins used in downstream purification was confirmed. The process removal of Deviron 13-S9 detergent from a protein-containing matrix was demonstrated using a protein A resin. These findings support Deviron 13-S9 detergent as a viable alternative to Triton X-100 detergent, ensuring robust viral inactivation, environmental compatibility, and alignment with regulatory requirements.
Collapse
Affiliation(s)
- Kakolie Banerjee
- Virology and Microbiological Sciences, EMD Millipore Corporation, Bedford, Massachusetts, USA
| | - Alice Antonello
- Novel Bioprocess Materials, Merck Life Science KGaA, Darmstadt, Germany
| | - Sandra Johnson
- Virology and Microbiological Sciences, EMD Millipore Corporation, Bedford, Massachusetts, USA
| | - Anja Licht
- Novel Bioprocess Materials, Merck Life Science KGaA, Darmstadt, Germany
| | - Almut Rapp
- Technology Transfer, Merck Life Science KGaA, Darmstadt, Germany
| | - Corinne Miller
- Virology and Microbiological Sciences, EMD Millipore Corporation, Bedford, Massachusetts, USA
| |
Collapse
|
2
|
Sil A, Basu S, Joshi V, Pilania RK, Siniah S, Suri D, Rawat A, Singh S. Immunoglobulin replacement therapies in inborn errors of immunity: a review. Front Pediatr 2024; 12:1368755. [PMID: 38425666 PMCID: PMC10902166 DOI: 10.3389/fped.2024.1368755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/26/2024] [Indexed: 03/02/2024] Open
Abstract
Immunoglobulins (Ig) were used as a therapeutic modality for the first time in a patient with X-linked agammaglobulinemia in 1952 by Colonel Ogden Bruton, decades before the molecular mechanisms causing the disease were unraveled. In many autoimmune and inflammatory illnesses, human immunoglobulin has been employed as a significant immunomodulatory and immunosuppressive drug. In patients with inborn errors of immunity (IEI), immunoglobulin remains a cornerstone of management. IEIs are notable causes of recurrent infections and autoimmunity due to inheritable single-gene defects in genes encoding for different components of the immune system. As there is decreased immunoglobulin production in IEIs with antibody defects, immunoglobulin replacement is the mainstay of therapy in these disorders. Although serum immunoglobulin levels may not be low in combined immune defects, immunoglobulin replacement is still necessary in these disorders due to a deficiency of functional antibodies and qualitative defects of immunoglobulins. Commercial immunoglobulin preparations are generated from plasma donated by thousands of donors. Immunoglobulin preparations are usually available in two forms: intravenous and subcutaneous immunoglobulins. In the developed world, both intravenous immunoglobulin (IVIg) and subcutaneous immunoglobulin (SCIg) are available, and SCIg is preferred over IVIg for replacement therapy in patients with IEIs. In developing countries, IVIg remains the mainstay of replacement therapy. The rate of adverse events has significantly reduced over the last few years due to advancements in the production process. In this review article, we discuss different aspects of the use of Ig (indications, dosing, mechanism of action, route, adverse effects) in patients with IEIs.
Collapse
Affiliation(s)
| | | | | | - Rakesh Kumar Pilania
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | | | | |
Collapse
|
3
|
Tanaka Y, Matsumoto T, Kadoya K, Shimokaria Y, Tawara I, Katayama N, Ohishi K. Overestimation of fibrinogen concentration in cryoprecipitate by repeated freeze-thawing with long thawing period as used in the Clauss method. Transfusion 2023; 63:1435-1440. [PMID: 37450885 DOI: 10.1111/trf.17483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/22/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Cryoprecipitate (CRY) is widely used for treating acquired hypofibrinogenemia. During our study to determine an optimal preparation method, we noticed that the measurement of fibrinogen concentration in CRY had a risk of overestimation. We analyzed this condition and mechanism. STUDY DESIGN AND METHODS CRY was prepared from fresh frozen plasma (FFP) under four conditions: A, 30 h thawing time, 2 cycles; B, 24 h thawing time, 2 cycles; C, 30 h thawing time, 1 cycle; and D, 24 h thawing time, 1 cycle. Then, fibrinogen concentrations in CRY and cryosupernatant (CS) were measured by the Clauss method. RESULTS Purification (CRY/CRY+CS) and recovery (CRY/FFP) rates in CRY prepared under 2-cycle conditions were higher than those under 1 cycle. However, recovery rates often exceeded 100%, particularly in the case of CRY prepared under A condition, and fibrinogen concentrations calculated by direct measurement were higher than those indirectly calculated from FFP and CS, suggesting an overestimation of fibrinogen values. The level of soluble fibrin monomer complex was considerably higher in CRY prepared under A than under D condition, indicating that CRY adopted a hypercoagulated state. We further found that repeated thawing/freezing increased fibrinogen values as measured by the Clauss method while mechanical vortexing did not. DISCUSSION Our findings suggest that direct assessment of fibrinogen contents in CRY prepared by repeated freeze-thawing with a longer thawing period presents a higher risk of overestimation. For the purpose of quality control, we propose an alternative method to indirectly estimate fibrinogen concentrations in CRY from those of CS and FFP.
Collapse
Affiliation(s)
- Yumi Tanaka
- Department of Transfusion Medicine and Cell Therapy, Mie University Hospital, Tsu, Japan
| | - Takeshi Matsumoto
- Department of Transfusion Medicine and Cell Therapy, Mie University Hospital, Tsu, Japan
| | - Kanae Kadoya
- Department of Transfusion Medicine and Cell Therapy, Mie University Hospital, Tsu, Japan
| | - Yuji Shimokaria
- Department of Clinical Laboratory, Mie University Hospital, Tsu, Japan
| | - Isao Tawara
- Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Naoyuki Katayama
- Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kohshi Ohishi
- Department of Transfusion Medicine and Cell Therapy, Mie University Hospital, Tsu, Japan
| |
Collapse
|
4
|
Tyagi M, Guaragni B, Dendi A, Tekleab AM, Motta M, Maheshwari A. Use of Cryoprecipitate in Newborn Infants. NEWBORN (CLARKSVILLE, MD.) 2023; 2:11-18. [PMID: 37206579 PMCID: PMC10193588 DOI: 10.5005/jp-journals-11002-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cryoprecipitate is a transfusion blood product derived from fresh-frozen plasma (FFP), comprised mainly of the insoluble precipitate that gravitates to the bottom of the container when plasma is thawed and refrozen. It is highly enriched in coagulation factors I (fibrinogen), VIII, and XIII; von Willebrand factor (vWF); and fibronectin. In this article, we have reviewed currently available information on the preparation, properties, and clinical importance of cryoprecipitate in treating critically ill neonates. We have searched extensively in the databases PubMed, Embase, and Scopus after short-listing keywords to describe the current relevance of cryoprecipitate.
Collapse
Affiliation(s)
- Manvi Tyagi
- Department of Pediatrics, Augusta University, Georgia, USA
| | - Brunetta Guaragni
- Department of Neonatology and Neonatal Intensive Care, Children’s Hospital, ASST-Spedali Civili, Brescia, Italy
| | - Alvaro Dendi
- Department of Neonatology, Centro Hospitalario Pereira Rossell, Universidad de la República, Montevideo, Uruguay
| | - Atnafu Mekonnen Tekleab
- Department of Pediatrics, St. Paul’s Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Mario Motta
- Department of Neonatology and Neonatal Intensive Care, Children’s Hospital, ASST-Spedali Civili, Brescia, Italy
| | | |
Collapse
|
5
|
Clinical Benefits of Early Concurrent Use of Cryoprecipitate and Plasma Compared With Plasma Only in Bleeding Trauma Patients. Crit Care Med 2022; 50:1477-1485. [PMID: 35759689 DOI: 10.1097/ccm.0000000000005596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The effectiveness of cryoprecipitate (Cryo) in trauma has not been well established; the benefits of Cryo might have been overestimated in previous studies since the difference in the total amount of administered clotting factors was not considered. We aimed to evaluate the benefits of the concurrent use of Cryo in combination with fresh frozen plasma (FFP) for bleeding trauma patients. DESIGN Retrospective cohort study. SETTING The American College of Surgeons Trauma Quality Improvement Program database between 2015 and 2019. PATIENTS Patients who received greater than or equal to 5 units of packed RBCs and at least 1 unit of FFP within the first 4 hours after arrival to a hospital were included and dichotomized according to whether Cryo was used within the first 4 hours of hospital arrival. INTERVENTION None. MEASUREMENTS AND MAIN RESULTS The outcomes of patients treated with Cryo and FFP were compared with those treated with FFP only using propensity score-matching analysis. The dose of administered clotting factors in each group was balanced. The primary outcome was inhospital mortality, and the secondary outcome was the occurrence rate of adverse events. A total of 24,002 patients (Cryo+FFP group: 6,018; FFP only group: 17,984) were eligible for analysis, of whom 4,852 propensity score-matched pairs were generated. Significantly lower inhospital mortality (1,959 patients [40.4%] in the Cryo+FFP group vs 2,142 patients [44.1%] in the FFP only group; odds ratio [OR], 0.86; 95% CI, 0.79-0.93) was observed in the Cryo+FFP group; no significant difference was observed in the occurrence rate of adverse events (1,857 [38.3%] vs 1,875 [38.6%]; OR, 1.02; 95% CI, 0.94-1.10). Several sensitivity analyses showed similar results. CONCLUSIONS Cryo use combined with FFP was significantly associated with reduced mortality in bleeding trauma patients. Future randomized controlled trials are warranted to confirm these results.
Collapse
|
6
|
Chasova V, Semenycheva L, Egorikhina M, Charykova I, Linkova D, Rubtsova Y, Fukina D, Koryagin A, Valetova N, Suleimanov E. Cod Gelatin as an Alternative to Cod Collagen in Hybrid Materials for Regenerative Medicine. Macromol Res 2022. [DOI: 10.1007/s13233-022-0017-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Reale A, Khong T, Mithraprabhu S, Spencer A. Translational Potential of RNA Derived From Extracellular Vesicles in Multiple Myeloma. Front Oncol 2021; 11:718502. [PMID: 34513695 PMCID: PMC8429596 DOI: 10.3389/fonc.2021.718502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/04/2021] [Indexed: 12/20/2022] Open
Abstract
The cross-talk between tumour cells and stromal cells is a hallmark of multiple myeloma (MM), a blood cancer that still remains incurable despite increased knowledge of its biology and advances in its treatment. Extracellular vesicles (EVs) derived from both tumour and stromal cells have been shown to play an important role in mediating this cross-talk ultimately favouring MM progression and drug resistance. Furthermore, EVs and their content including RNA (EV-RNA) have been successfully isolated from blood and are being explored as liquid biomarkers in MM with the potential to improve diagnosis and monitoring modalities with a minimally-invasive and repeatable analysis, i.e. liquid biopsy. In this review, we describe both the role of EV-RNA in defining the biological features of MM and their potential translational relevance as liquid biomarkers, therapeutic targets and delivery systems. We also discuss the limitations and technical challenges related to the isolation and characterization of EVs and provide a perspective on the future of MM-derived EV-RNA in translational research.
Collapse
Affiliation(s)
- Antonia Reale
- Myeloma Research Group, Australian Centre for Blood Diseases, Central Clinical School, Monash University/Alfred Health, Melbourne, VIC, Australia
| | - Tiffany Khong
- Myeloma Research Group, Australian Centre for Blood Diseases, Central Clinical School, Monash University/Alfred Health, Melbourne, VIC, Australia
| | - Sridurga Mithraprabhu
- Myeloma Research Group, Australian Centre for Blood Diseases, Central Clinical School, Monash University/Alfred Health, Melbourne, VIC, Australia
| | - Andrew Spencer
- Myeloma Research Group, Australian Centre for Blood Diseases, Central Clinical School, Monash University/Alfred Health, Melbourne, VIC, Australia.,Malignant Haematology and Stem Cell Transplantation, The Alfred Hospital, and Department of Clinical Haematology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Egorikhina MN, Semenycheva LL, Chasova VO, Bronnikova II, Rubtsova YP, Zakharychev EA, Aleynik DY. Changes in the Molecular Characteristics of Bovine and Marine Collagen in the Presence of Proteolytic Enzymes as a Stage Used in Scaffold Formation. Mar Drugs 2021; 19:502. [PMID: 34564164 PMCID: PMC8470260 DOI: 10.3390/md19090502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022] Open
Abstract
Biopolymers, in particular collagen and fibrinogen, are the leading materials for use in tissue engineering. When developing technology for scaffold formation, it is important to understand the properties of the source materials as well as the mechanisms that determine the formation of the scaffold structures. Both factors influence the properties of scaffolds to a great extent. Our present work aimed to identify the features of the molecular characteristics of collagens of different species origin and the changes they undergo during the enzymatic hydrolysis used for the process of scaffold formation. For this study, we used the methods of gel-penetrating chromatography, dynamic light scattering, reading IR spectra, and scanning electron microscopy. It was found that cod collagen (CC) and bovine collagen (BC) have different initial molecular weight parameters, and that, during hydrolysis, the majority of either type of protein is hydrolyzed by the proteolytic enzymes within the first minute. The differently sourced collagen samples were also hydrolyzed with the formation of two low molecular fractions: Mw ~ 10 kDa and ~20 kDa. In the case of CC, the microstructure of the final scaffolds contained denser, closely spaced fibrillar areas, while the BC-sourced scaffolds had narrow, short fibrils composed of unbound fibers of hydrolyzed collagen in their structure.
Collapse
Affiliation(s)
- Marfa N. Egorikhina
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University, the Ministry of Health of the Russian Federation (FSBEI HE PRMU MOH), Minin and Pozharsky Square 10/1, 603950 Nizhny Novgorod, Russia; (I.I.B.); (Y.P.R.); (D.Y.A.)
| | - Ludmila L. Semenycheva
- Faculty of Chemistry, Lobachevsky State University of Nizhny Novgorod, pr. Gagarina 23, 603950 Nizhny Novgorod, Russia; (L.L.S.); (V.O.C.); (E.A.Z.)
| | - Victoria O. Chasova
- Faculty of Chemistry, Lobachevsky State University of Nizhny Novgorod, pr. Gagarina 23, 603950 Nizhny Novgorod, Russia; (L.L.S.); (V.O.C.); (E.A.Z.)
| | - Irina I. Bronnikova
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University, the Ministry of Health of the Russian Federation (FSBEI HE PRMU MOH), Minin and Pozharsky Square 10/1, 603950 Nizhny Novgorod, Russia; (I.I.B.); (Y.P.R.); (D.Y.A.)
| | - Yulia P. Rubtsova
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University, the Ministry of Health of the Russian Federation (FSBEI HE PRMU MOH), Minin and Pozharsky Square 10/1, 603950 Nizhny Novgorod, Russia; (I.I.B.); (Y.P.R.); (D.Y.A.)
| | - Evgeniy A. Zakharychev
- Faculty of Chemistry, Lobachevsky State University of Nizhny Novgorod, pr. Gagarina 23, 603950 Nizhny Novgorod, Russia; (L.L.S.); (V.O.C.); (E.A.Z.)
| | - Diana Ya. Aleynik
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University, the Ministry of Health of the Russian Federation (FSBEI HE PRMU MOH), Minin and Pozharsky Square 10/1, 603950 Nizhny Novgorod, Russia; (I.I.B.); (Y.P.R.); (D.Y.A.)
| |
Collapse
|
9
|
Human Plasma Extracellular Vesicle Isolation and Proteomic Characterization for the Optimization of Liquid Biopsy in Multiple Myeloma. Methods Mol Biol 2021; 2261:151-191. [PMID: 33420989 DOI: 10.1007/978-1-0716-1186-9_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer cells secrete membranous extracellular vesicles (EVs) which contain specific oncogenic molecular cargo (including oncoproteins, oncopeptides, and RNA) into their microenvironment and the circulation. As such, EVs including exosomes (small EVs) and microvesicles (large EVs) represent important circulating biomarkers for various diseases, including cancer and its progression. These circulating biomarkers offer a potentially minimally invasive and repeatable targets for analysis (liquid biopsy) that could aid in the diagnosis, risk stratification, and monitoring of cancer. Although their potential as cancer biomarkers has been promising, the identification and quantification of EVs in clinical samples remain challenging. Like EVs, other types of circulating biomarkers (including cell-free nucleic acids, cf-NAs; or circulating tumor cells, CTCs) may represent a complementary or alternative approach to cancer diagnosis. In the context of multiple myeloma (MM), a systemic cancer type that causes cancer cells to accumulate in the bone marrow, the specific role for EVs as biomarkers for diagnosis and monitoring remains undefined. Tumor heterogeneity along with the various subtypes of MM (such as non-secretory MM) that cannot be monitored using conventional testing (e.g. sequential serological testing and bone marrow biopsies) render liquid biopsy and circulating tumor-derived EVs a promising approach. In this protocol, we describe the isolation and purification of EVs from peripheral blood plasma (PBPL) collected from healthy donors and patients with MM for a biomarker discovery strategy. Our results demonstrate detection of circulating EVs from as little as 1 mL of MM patients' PBPL. High-resolution mass spectrometry (MS)-based proteomics promises to provide new avenues in identifying novel markers for detection, monitoring, and therapeutic intervention of disease. We describe biophysical characterization and quantitative proteomic profiling of disease-specific circulating EVs which may provide important implications for the development of cancer diagnostics in MM.
Collapse
|
10
|
Reale A, Carmichael I, Xu R, Mithraprabhu S, Khong T, Chen M, Fang H, Savvidou I, Ramachandran M, Bingham N, Simpson RJ, Greening DW, Spencer A. Human myeloma cell- and plasma-derived extracellular vesicles contribute to functional regulation of stromal cells. Proteomics 2021; 21:e2000119. [PMID: 33580572 DOI: 10.1002/pmic.202000119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023]
Abstract
Circulating small extracellular vesicles (sEV) represent promising non-invasive biomarkers that may aid in the diagnosis and risk-stratification of multiple myeloma (MM), an incurable blood cancer. Here, we comprehensively isolated and characterized sEV from human MM cell lines (HMCL) and patient-derived plasma (psEV) by specific EV-marker enrichment and morphology. Importantly, we demonstrate that HMCL-sEV are readily internalised by stromal cells to functionally modulate proliferation. psEV were isolated using various commercial approaches and pre-analytical conditions (collection tube types, storage conditions) assessed for sEV yield and marker enrichment. Functionally, MM-psEV was shown to regulate stromal cell proliferation and migration. In turn, pre-educated stromal cells favour HMCL adhesion. psEV isolated from patients with both pre-malignant plasma cell disorders (monoclonal gammopathy of undetermined significance [MGUS]; smouldering MM [SMM]) and MM have a similar ability to promote cell migration and adhesion, suggesting a role for both malignant and pre-malignant sEV in disease progression. Proteomic profiling of MM-psEV (305 proteins) revealed enrichment of oncogenic factors implicated in cell migration and adhesion, in comparison to non-disease psEV. This study describes a protocol to generate morphologically-intact and biologically functional sEV capable of mediating the regulation of stromal cells, and a model for the characterization of tumour-stromal cross-talk by sEV in MM.
Collapse
Affiliation(s)
- Antonia Reale
- Myeloma Research Group, Australian Centre for Blood Diseases, Monash University/Alfred Health, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Irena Carmichael
- Monash Micro Imaging-AMREP, Monash University, Melbourne, Victoria, Australia
| | - Rong Xu
- Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Nanobiotechnology Laboratory, Australian Centre for Blood Diseases, Monash University/Alfred Health, Melbourne, Victoria, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Sridurga Mithraprabhu
- Myeloma Research Group, Australian Centre for Blood Diseases, Monash University/Alfred Health, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Tiffany Khong
- Myeloma Research Group, Australian Centre for Blood Diseases, Monash University/Alfred Health, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Maoshan Chen
- Myeloma Research Group, Australian Centre for Blood Diseases, Monash University/Alfred Health, Melbourne, Victoria, Australia
| | - Haoyun Fang
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Ioanna Savvidou
- Myeloma Research Group, Australian Centre for Blood Diseases, Monash University/Alfred Health, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Malarmathy Ramachandran
- Myeloma Research Group, Australian Centre for Blood Diseases, Monash University/Alfred Health, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Nicholas Bingham
- Myeloma Research Group, Australian Centre for Blood Diseases, Monash University/Alfred Health, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Richard J Simpson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - David W Greening
- Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.,Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Andrew Spencer
- Myeloma Research Group, Australian Centre for Blood Diseases, Monash University/Alfred Health, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Malignant Haematology and Stem Cell Transplantation, The Alfred Hospital, and Department of Clinical Haematology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Egorikhina MN, Rubtsova YP, Charykova IN, Bugrova ML, Bronnikova II, Mukhina PA, Sosnina LN, Aleynik DY. Biopolymer Hydrogel Scaffold as an Artificial Cell Niche for Mesenchymal Stem Cells. Polymers (Basel) 2020; 12:polym12112550. [PMID: 33143320 PMCID: PMC7692241 DOI: 10.3390/polym12112550] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
The activity of stem cell processes is regulated by internal and external signals of the cell "niche". In general, the niche of stem cells can be represented as the microenvironment of the cells, providing a signal complex, determining the properties of the cells. At the same time, the "niche" concept implies feedback. Cells can modify their microenvironment, supporting homeostasis or remodeling the composition and structure of the extracellular matrix. To ensure the regenerative potential of tissue engineering products the "niche" concept should be taken into account. To investigate interactions in an experimental niche, an original hydrogel biopolymer scaffold with encapsulated mesenchymal adipose-derived stem cells (ASCs) was used in this study. The scaffold provides for cell adhesion, active cell growth, and proliferative activity. Cells cultured within a scaffold are distinguished by the presence of a developed cytoskeleton and they form a cellular network. ASCs cultured within a scaffold change their microenvironment by secreting VEGF-A and remodeling the scaffold structure. Scaffold biodegradation processes were evaluated after previous culturing of the ASCs in the scaffolds for periods of either 24 h or six days. The revealed differences confirmed that changes had occurred in the properties of scaffolds remodeled by cells during cultivation. The mechanisms of the identified changes and the possibility of considering the presented scaffold as an appropriate artificial niche for ASCs are discussed.
Collapse
|
12
|
Egorikhina MN, Aleynik DY, Rubtsova YP, Levin GY, Charykova IN, Semenycheva LL, Bugrova ML, Zakharychev EA. Hydrogel scaffolds based on blood plasma cryoprecipitate and collagen derived from various sources: Structural, mechanical and biological characteristics. Bioact Mater 2019; 4:334-345. [PMID: 31720490 PMCID: PMC6838346 DOI: 10.1016/j.bioactmat.2019.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/04/2019] [Accepted: 10/13/2019] [Indexed: 01/19/2023] Open
Abstract
At present there is a growing need for tissue engineering products, including the products of scaffold-technologies. Biopolymer hydrogel scaffolds have a number of advantages and are increasingly being used to provide means of cell transfer for therapeutic treatments and for inducing tissue regeneration. This work presents original hydrogel biopolymer scaffolds based on a blood plasma cryoprecipitate and collagen and formed under conditions of enzymatic hydrolysis. Two differently originated collagens were used for the scaffold formation. During this work the structural and mechanical characteristics of the scaffold were studied. It was found that, depending on the origin of collagen, scaffolds possess differences in their structural and mechanical characteristics. Both types of hydrogel scaffolds have good biocompatibility and provide conditions that maintain the three-dimensional growth of adipose tissue stem cells. Hence, scaffolds based on such a blood plasma cryoprecipitate and collagen have good prospects as cell carriers and can be widely used in regenerative medicine.
Collapse
Affiliation(s)
- Marfa N. Egorikhina
- Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation, Nizhny Novgorod, Russian Federation
| | - Diana Ya Aleynik
- Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation, Nizhny Novgorod, Russian Federation
| | - Yulia P. Rubtsova
- Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation, Nizhny Novgorod, Russian Federation
| | - Grigory Ya Levin
- Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation, Nizhny Novgorod, Russian Federation
| | - Irina N. Charykova
- Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation, Nizhny Novgorod, Russian Federation
| | | | - Marina L. Bugrova
- Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation, Nizhny Novgorod, Russian Federation
| | | |
Collapse
|
13
|
Fauth M, Hegewald AB, Schmitz L, Krone DJ, Saul MJ. Validation of extracellular miRNA quantification in blood samples using RT-qPCR. FASEB Bioadv 2019; 1:481-492. [PMID: 32123845 PMCID: PMC6996320 DOI: 10.1096/fba.2019-00018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 02/27/2019] [Accepted: 06/04/2019] [Indexed: 12/25/2022] Open
Abstract
Extracellular microRNAs (miRs) have been proposed as important blood-based biomarkers for several diseases. Contrary to proteins and other RNA classes, miRs are stable and easily detectable in body fluids. In this respect, miRs represent a perfect candidate for minimal invasive biomarkers which can hopefully become a complement for invasive histological examinations of tumor tissue. Despite the high number of miR biomarker studies, the specificity and reproducibility of these studies is missing. Therefore, the standardization of pre-analytical and analytical methods is urgently needed. Here, we validated miR analysis for RNA isolation and miR quantification by quantitative polymerase chain reaction (RT-qPCR) based on good laboratory practice (GLP). Validation was carried out exemplarily on four miRs, which had already been described as potential biomarkers in previous studies. As basis for RNA analysis using RT-qPCR, the Minimum Information for Publication of Quantitative Real-Time PCR Experiments were applied and adapted on the analysis of circulating miRs from human plasma. In our study, we identified and solved several pitfalls from handling to normalization strategy in the analysis of extracellular miRs that lead to inconsistent and non-repeatable data. Principles of GLP set a framework of experimental design, performance and monitoring to ensure high quality and reliable data. Within this study, we appointed first acceptance criteria for circulating miR quantification during validation which set standards for future miR quantification in blood samples.
Collapse
Affiliation(s)
- Maria Fauth
- Department of BiologyTechnische Universität DarmstadtDarmstadtGermany
- Prolytic GmbHFrankfurt/MGermany
| | - Anett B. Hegewald
- Department of BiologyTechnische Universität DarmstadtDarmstadtGermany
| | | | | | - Meike J. Saul
- Department of BiologyTechnische Universität DarmstadtDarmstadtGermany
- Institute of Pharmaceutical ChemistryGoethe Universität FrankfurtFrankfurt/MGermany
| |
Collapse
|
14
|
Parachalil DR, Bruno C, Bonnier F, Blasco H, Chourpa I, McIntyre J, Byrne HJ. Raman spectroscopic screening of high and low molecular weight fractions of human serum. Analyst 2019; 144:4295-4311. [DOI: 10.1039/c9an00599d] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study explores the suitability of Raman spectroscopy as a bioanalytical tool, when coupled with ultra-filtration and multivariate analysis, to detect imbalances in both high molecular weight and low molecular weight fractions of the same samples of human patient serum, in the native liquid form.
Collapse
Affiliation(s)
- Drishya Rajan Parachalil
- FOCAS Research Institute
- Technological University Dublin
- Dublin 8
- Ireland
- School of Physics and Optometric & Clinical Sciences
| | - Clément Bruno
- Université de Tours
- UFR sciences pharmaceutiques
- EA 6295 Nanomédicaments et Nanosondes
- 37200 Tours
- France
| | - Franck Bonnier
- Université de Tours
- UFR sciences pharmaceutiques
- EA 6295 Nanomédicaments et Nanosondes
- 37200 Tours
- France
| | - Hélène Blasco
- CHRU de Tours
- Laboratoire de Biochimie et Biologie Moléculaire
- Tours
- France
- Université de Tours
| | - Igor Chourpa
- Université de Tours
- UFR sciences pharmaceutiques
- EA 6295 Nanomédicaments et Nanosondes
- 37200 Tours
- France
| | - Jennifer McIntyre
- FOCAS Research Institute
- Technological University Dublin
- Dublin 8
- Ireland
| | - Hugh J. Byrne
- FOCAS Research Institute
- Technological University Dublin
- Dublin 8
- Ireland
| |
Collapse
|