1
|
Lortlar Ünlü N, Bakhshpour-Yucel M, Chiodi E, Diken-Gür S, Emre S, Ünlü MS. Characterization of Receptor Binding Affinity for Vascular Endothelial Growth Factor with Interferometric Imaging Sensor. BIOSENSORS 2024; 14:315. [PMID: 39056591 PMCID: PMC11274412 DOI: 10.3390/bios14070315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024]
Abstract
Wet Age-related macular degeneration (AMD) is the leading cause of vision loss in industrialized nations, often resulting in blindness. Biologics, therapeutic agents derived from biological sources, have been effective in AMD, albeit at a high cost. Due to the high cost of AMD treatment, it is critical to determine the binding affinity of biologics to ensure their efficacy and make quantitative comparisons between different drugs. This study evaluates the in vitro VEGF binding affinity of two drugs used for treating wet AMD, monoclonal antibody-based bevacizumab and fusion protein-based aflibercept, performing quantitative binding measurements on an Interferometric Reflectance Imaging Sensor (IRIS) system. Both biologics can inhibit Vascular Endothelial Growth Factor (VEGF). For comparison, the therapeutic molecules were immobilized on to the same support in a microarray format, and their real-time binding interactions with recombinant human VEGF (rhVEGF) were measured using an IRIS. The results indicated that aflibercept exhibited a higher binding affinity to VEGF than bevacizumab, consistent with previous studies using ELISA and SPR. The IRIS system's innovative and cost-effective features, such as silicon-based semiconductor chips for enhanced signal detection and multiplexed analysis capability, offer new prospects in sensor technologies. These attributes make IRISs a promising tool for future applications in the development of therapeutic agents, specifically biologics.
Collapse
Affiliation(s)
- Nese Lortlar Ünlü
- Faculty of Medicine, Histology and Embryology, Atlas University, 34408 İstanbul, Turkey
- Photonics Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA;
| | - Monireh Bakhshpour-Yucel
- Department of Chemistry, Faculty of Arts and Science, Bursa Uludag University, 16059 Bursa, Turkey;
- Photonics Center, Department of Electrical Engineering, Boston University, Boston, MA 02215, USA; (E.C.); (S.D.-G.)
| | - Elisa Chiodi
- Photonics Center, Department of Electrical Engineering, Boston University, Boston, MA 02215, USA; (E.C.); (S.D.-G.)
| | - Sinem Diken-Gür
- Photonics Center, Department of Electrical Engineering, Boston University, Boston, MA 02215, USA; (E.C.); (S.D.-G.)
- Department of Biology, Hacettepe University, 06800 Ankara, Turkey
| | - Sinan Emre
- Batigoz Eye Health Branch Center, 35210 Izmir, Turkey;
| | - M. Selim Ünlü
- Photonics Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA;
- Photonics Center, Department of Electrical Engineering, Boston University, Boston, MA 02215, USA; (E.C.); (S.D.-G.)
| |
Collapse
|
2
|
Qiu L, Liu X, Zhu L, Luo L, Sun N, Pei R. Current Advances in Technologies for Single Extracellular Vesicle Analysis and Its Clinical Applications in Cancer Diagnosis. BIOSENSORS 2023; 13:129. [PMID: 36671964 PMCID: PMC9856491 DOI: 10.3390/bios13010129] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/31/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Extracellular vesicles (EVs) have been regarded as one of the most potential diagnostic biomarkers for different cancers, due to their unique physiological and pathological functions. However, it is still challenging to precisely analyze the contents and sources of EVs, due to their heterogeneity. Herein, we summarize the advances in technologies for a single EV analysis, which may provide new strategies to study the heterogeneity of EVs, as well as their cargo, more specifically. Furthermore, the applications of a single EV analysis on cancer early diagnosis are also discussed.
Collapse
Affiliation(s)
- Lei Qiu
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
- Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Xingzhu Liu
- Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Libo Zhu
- Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Liqiang Luo
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Na Sun
- Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Renjun Pei
- Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Bordanaba-Florit G, Royo F, Kruglik SG, Falcón-Pérez JM. Using single-vesicle technologies to unravel the heterogeneity of extracellular vesicles. Nat Protoc 2021; 16:3163-3185. [PMID: 34135505 DOI: 10.1038/s41596-021-00551-z] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/31/2021] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs) are heterogeneous lipid containers with a complex molecular cargo comprising several populations with unique roles in biological processes. These vesicles are closely associated with specific physiological features, which makes them invaluable in the detection and monitoring of various diseases. EVs play a key role in pathophysiological processes by actively triggering genetic or metabolic responses. However, the heterogeneity of their structure and composition hinders their application in medical diagnosis and therapies. This diversity makes it difficult to establish their exact physiological roles, and the functions and composition of different EV (sub)populations. Ensemble averaging approaches currently employed for EV characterization, such as western blotting or 'omics' technologies, tend to obscure rather than reveal these heterogeneities. Recent developments in single-vesicle analysis have made it possible to overcome these limitations and have facilitated the development of practical clinical applications. In this review, we discuss the benefits and challenges inherent to the current methods for the analysis of single vesicles and review the contribution of these approaches to the understanding of EV biology. We describe the contributions of these recent technological advances to the characterization and phenotyping of EVs, examination of the role of EVs in cell-to-cell communication pathways and the identification and validation of EVs as disease biomarkers. Finally, we discuss the potential of innovative single-vesicle imaging and analysis methodologies using microfluidic devices, which promise to deliver rapid and effective basic and practical applications for minimally invasive prognosis systems.
Collapse
Affiliation(s)
- Guillermo Bordanaba-Florit
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.
| | - Félix Royo
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Madrid, Spain
| | - Sergei G Kruglik
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Jean Perrin, Paris, France
| | - Juan M Falcón-Pérez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Madrid, Spain. .,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
4
|
Yurdakul C, Avci O, Matlock A, Devaux AJ, Quintero MV, Ozbay E, Davey RA, Connor JH, Karl WC, Tian L, Ünlü MS. High-Throughput, High-Resolution Interferometric Light Microscopy of Biological Nanoparticles. ACS NANO 2020; 14:2002-2013. [PMID: 32003974 DOI: 10.1021/acsnano.9b08512] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Label-free, visible light microscopy is an indispensable tool for studying biological nanoparticles (BNPs). However, conventional imaging techniques have two major challenges: (i) weak contrast due to low-refractive-index difference with the surrounding medium and exceptionally small size and (ii) limited spatial resolution. Advances in interferometric microscopy have overcome the weak contrast limitation and enabled direct detection of BNPs, yet lateral resolution remains as a challenge in studying BNP morphology. Here, we introduce a wide-field interferometric microscopy technique augmented by computational imaging to demonstrate a 2-fold lateral resolution improvement over a large field-of-view (>100 × 100 μm2), enabling simultaneous imaging of more than 104 BNPs at a resolution of ∼150 nm without any labels or sample preparation. We present a rigorous vectorial-optics-based forward model establishing the relationship between the intensity images captured under partially coherent asymmetric illumination and the complex permittivity distribution of nanoparticles. We demonstrate high-throughput morphological visualization of a diverse population of Ebola virus-like particles and a structurally distinct Ebola vaccine candidate. Our approach offers a low-cost and robust label-free imaging platform for high-throughput and high-resolution characterization of a broad size range of BNPs.
Collapse
Affiliation(s)
- Celalettin Yurdakul
- Department of Electrical and Computer Engineering , Boston University , Boston , Massachusetts 02215 , United States
| | - Oguzhan Avci
- Department of Electrical and Computer Engineering , Boston University , Boston , Massachusetts 02215 , United States
| | - Alex Matlock
- Department of Electrical and Computer Engineering , Boston University , Boston , Massachusetts 02215 , United States
| | - Alexander J Devaux
- Department of Microbiology and National Infectious Diseases Laboratories , Boston University School of Medicine , Boston , Massachusetts 02118 , United States
| | - Maritza V Quintero
- Department of Biochemistry and Structural Biology , University of Texas Health San Antonio , San Antonio , Texas 78229 , United States
| | - Ekmel Ozbay
- Department of Electrical and Electronics Engineering , Bilkent University , 06800 Ankara , Turkey
| | - Robert A Davey
- Department of Microbiology and National Infectious Diseases Laboratories , Boston University School of Medicine , Boston , Massachusetts 02118 , United States
| | - John H Connor
- Department of Microbiology and National Infectious Diseases Laboratories , Boston University School of Medicine , Boston , Massachusetts 02118 , United States
| | - W Clem Karl
- Department of Electrical and Computer Engineering , Boston University , Boston , Massachusetts 02215 , United States
| | - Lei Tian
- Department of Electrical and Computer Engineering , Boston University , Boston , Massachusetts 02215 , United States
| | - M Selim Ünlü
- Department of Electrical and Computer Engineering , Boston University , Boston , Massachusetts 02215 , United States
| |
Collapse
|
5
|
Tembo J, Simulundu E, Changula K, Handley D, Gilbert M, Chilufya M, Asogun D, Ansumana R, Kapata N, Ntoumi F, Ippolito G, Zumla A, Bates M. Recent advances in the development and evaluation of molecular diagnostics for Ebola virus disease. Expert Rev Mol Diagn 2019; 19:325-340. [PMID: 30916590 DOI: 10.1080/14737159.2019.1595592] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION The 2014-16 outbreak of ebola virus disease (EVD) in West Africa resulted in 11,308 deaths. During the outbreak only 60% of patients were laboratory confirmed and global health authorities have identified the need for accurate and readily deployable molecular diagnostics as an important component of the ideal response to future outbreaks, to quickly identify and isolate patients. Areas covered: Currently PCR-based techniques and rapid diagnostic tests (RDTs) that detect antigens specific to EVD infections dominate the diagnostic landscape, but recent advances in biosensor technologies have led to novel approaches for the development of EVD diagnostics. This review summarises the literature and available performance data of currently available molecular diagnostics for ebolavirus, identifies knowledge gaps and maps out future priorities for research in this field. Expert opinion: While there are now a plethora of diagnostic tests for EVD at various stages of development, there is an acute need for studies to compare their clinical performance, but the sporadic nature of EVD outbreaks makes this extremely challenging, demanding pragmatic new modalities of research funding and ethical/institutional approval, to enable responsive research in outbreak settings. Retrospective head-to-head diagnostic comparisons could also be implemented using biobanked specimens, providing this can be done safely.
Collapse
Affiliation(s)
- John Tembo
- a HerpeZ , University Teaching hospital , Lusaka , Zambia
| | - Edgar Simulundu
- b Department of Disease Control , University of Zambia School of Veterinary Medicine , Lusaka , Zambia
| | - Katendi Changula
- b Department of Disease Control , University of Zambia School of Veterinary Medicine , Lusaka , Zambia
| | - Dale Handley
- c School of Life Sciences , University of Lincoln , Lincoln , UK
| | - Matthew Gilbert
- c School of Life Sciences , University of Lincoln , Lincoln , UK
| | - Moses Chilufya
- a HerpeZ , University Teaching hospital , Lusaka , Zambia
| | - Danny Asogun
- d Lassa fever research institute , Irrua University Teaching Hospital , Irrua , Nigeria
| | | | - Nathan Kapata
- f Zambia National Public Health Institute , Lusaka , Zambia
| | - Francine Ntoumi
- g Fondation Congolaise pour la Recherche Médicale , Brazzaville , Republic of Congo
| | - Giuseppe Ippolito
- h National Institute for Infectious Diseases , Lazzaro Spallanzani, IRCCS , Rome , Italy
| | - Alimuddin Zumla
- i Centre for Clinical Microbiology, Division of Infection and Immunity , University College London (UCL) , London , UK.,j National Institute of Health and Research Biomedical Research Centre , UCL Hospitals National Health Service Foundation Trust , London , UK
| | - Matthew Bates
- a HerpeZ , University Teaching hospital , Lusaka , Zambia.,c School of Life Sciences , University of Lincoln , Lincoln , UK.,i Centre for Clinical Microbiology, Division of Infection and Immunity , University College London (UCL) , London , UK
| |
Collapse
|