1
|
López-Sánchez U, Munro LJ, Ladefoged LK, Pedersen AJ, Brun CC, Lyngby SM, Baud D, Juillan-Binard C, Pedersen MG, Lummis SCR, Bang-Andersen B, Schiøtt B, Chipot C, Schoehn G, Neyton J, Dehez F, Nury H, Kristensen AS. Structural determinants for activity of the antidepressant vortioxetine at human and rodent 5-HT 3 receptors. Nat Struct Mol Biol 2024; 31:1232-1242. [PMID: 38698207 DOI: 10.1038/s41594-024-01282-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/19/2024] [Indexed: 05/05/2024]
Abstract
Vortioxetine (VTX) is a recently approved antidepressant that targets a variety of serotonin receptors. Here, we investigate the drug's molecular mechanism of operation at the serotonin 5-HT3 receptor (5-HT3R), which features two properties: VTX acts differently on rodent and human 5-HT3R, and VTX appears to suppress any subsequent response to agonists. Using a combination of cryo-EM, electrophysiology, voltage-clamp fluorometry and molecular dynamics, we show that VTX stabilizes a resting inhibited state of the mouse 5-HT3R and an agonist-bound-like state of human 5-HT3R, in line with the functional profile of the drug. We report four human 5-HT3R structures and show that the human receptor transmembrane domain is intrinsically fragile. We also explain the lack of recovery after VTX administration via a membrane partition mechanism.
Collapse
Affiliation(s)
- Uriel López-Sánchez
- University Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Lachlan Jake Munro
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | - Anders Juel Pedersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Christian Colding Brun
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Signe Meisner Lyngby
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Delphine Baud
- University Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | | | | | - Sarah C R Lummis
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Birgit Schiøtt
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Christophe Chipot
- Université de Lorraine, CNRS, LPCT, Nancy, France
- Laboratoire International Associé CNRS and University of Illinois at Urbana-Champaign, Vandoeuvre-les-Nancy, France
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Guy Schoehn
- University Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Jacques Neyton
- University Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Francois Dehez
- Université de Lorraine, CNRS, LPCT, Nancy, France
- Laboratoire International Associé CNRS and University of Illinois at Urbana-Champaign, Vandoeuvre-les-Nancy, France
| | - Hugues Nury
- University Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France.
| | - Anders S Kristensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Uchański T, Masiulis S, Fischer B, Kalichuk V, López-Sánchez U, Zarkadas E, Weckener M, Sente A, Ward P, Wohlkönig A, Zögg T, Remaut H, Naismith JH, Nury H, Vranken W, Aricescu AR, Pardon E, Steyaert J. Megabodies expand the nanobody toolkit for protein structure determination by single-particle cryo-EM. Nat Methods 2021; 18:60-68. [PMID: 33408403 PMCID: PMC7611088 DOI: 10.1038/s41592-020-01001-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 10/22/2020] [Indexed: 01/28/2023]
Abstract
Nanobodies are popular and versatile tools for structural biology. They have a compact single immunoglobulin domain organization, bind target proteins with high affinities while reducing their conformational heterogeneity and stabilize multi-protein complexes. Here we demonstrate that engineered nanobodies can also help overcome two major obstacles that limit the resolution of single-particle cryo-electron microscopy reconstructions: particle size and preferential orientation at the water-air interfaces. We have developed and characterized constructs, termed megabodies, by grafting nanobodies onto selected protein scaffolds to increase their molecular weight while retaining the full antigen-binding specificity and affinity. We show that the megabody design principles are applicable to different scaffold proteins and recognition domains of compatible geometries and are amenable for efficient selection from yeast display libraries. Moreover, we demonstrate that megabodies can be used to obtain three-dimensional reconstructions for membrane proteins that suffer from severe preferential orientation or are otherwise too small to allow accurate particle alignment.
Collapse
Affiliation(s)
- Tomasz Uchański
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Simonas Masiulis
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Baptiste Fischer
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Valentina Kalichuk
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Uriel López-Sánchez
- CNRS, Université Grenoble Alpes, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Eleftherios Zarkadas
- CNRS, Université Grenoble Alpes, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Miriam Weckener
- Rosalind Franklin Institute, Rutherford Appleton Laboratory, Didcot, UK
| | - Andrija Sente
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Philip Ward
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Alexandre Wohlkönig
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Thomas Zögg
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Han Remaut
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - James H Naismith
- Rosalind Franklin Institute, Rutherford Appleton Laboratory, Didcot, UK
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Hugues Nury
- CNRS, Université Grenoble Alpes, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Wim Vranken
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, Brussels, Belgium
| | - A Radu Aricescu
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium.
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium.
| |
Collapse
|
3
|
Zarkadas E, Zhang H, Cai W, Effantin G, Perot J, Neyton J, Chipot C, Schoehn G, Dehez F, Nury H. The Binding of Palonosetron and Other Antiemetic Drugs to the Serotonin 5-HT3 Receptor. Structure 2020; 28:1131-1140.e4. [DOI: 10.1016/j.str.2020.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/18/2020] [Accepted: 07/08/2020] [Indexed: 12/19/2022]
|
4
|
Polovinkin L, Hassaine G, Perot J, Neumann E, Jensen AA, Lefebvre SN, Corringer PJ, Neyton J, Chipot C, Dehez F, Schoehn G, Nury H. Conformational transitions of the serotonin 5-HT 3 receptor. Nature 2018; 563:275-279. [PMID: 30401839 DOI: 10.1038/s41586-018-0672-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 09/07/2018] [Indexed: 01/03/2023]
Abstract
The serotonin 5-HT3 receptor is a pentameric ligand-gated ion channel (pLGIC). It belongs to a large family of receptors that function as allosteric signal transducers across the plasma membrane1,2; upon binding of neurotransmitter molecules to extracellular sites, the receptors undergo complex conformational transitions that result in transient opening of a pore permeable to ions. 5-HT3 receptors are therapeutic targets for emesis and nausea, irritable bowel syndrome and depression3. In spite of several reported pLGIC structures4-8, no clear unifying view has emerged on the conformational transitions involved in channel gating. Here we report four cryo-electron microscopy structures of the full-length mouse 5-HT3 receptor in complex with the anti-emetic drug tropisetron, with serotonin, and with serotonin and a positive allosteric modulator, at resolutions ranging from 3.2 Å to 4.5 Å. The tropisetron-bound structure resembles those obtained with an inhibitory nanobody5 or without ligand9. The other structures include an 'open' state and two ligand-bound states. We present computational insights into the dynamics of the structures, their pore hydration and free-energy profiles, and characterize movements at the gate level and cation accessibility in the pore. Together, these data deepen our understanding of the gating mechanism of pLGICs and capture ligand binding in unprecedented detail.
Collapse
Affiliation(s)
| | | | - Jonathan Perot
- CNRS, Université Grenoble Alpes, CEA, IBS, Grenoble, France
| | | | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Solène N Lefebvre
- Channel Receptors Unit, CNRS UMR 3571, Institut Pasteur, Paris, France
| | | | - Jacques Neyton
- CNRS, Université Grenoble Alpes, CEA, IBS, Grenoble, France.
| | - Christophe Chipot
- Université de Lorraine, CNRS, LPCT, Nancy, France.,Laboratoire International Associé CNRS and University of Illinois at Urbana-Champaign, Vandoeuvre-les-Nancy, France.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Francois Dehez
- Université de Lorraine, CNRS, LPCT, Nancy, France.,Laboratoire International Associé CNRS and University of Illinois at Urbana-Champaign, Vandoeuvre-les-Nancy, France
| | - Guy Schoehn
- CNRS, Université Grenoble Alpes, CEA, IBS, Grenoble, France
| | - Hugues Nury
- CNRS, Université Grenoble Alpes, CEA, IBS, Grenoble, France.
| |
Collapse
|