1
|
Guo L, Yang G. Pioneering DNA assembling techniques and their applications in eukaryotic microalgae. Biotechnol Adv 2024; 70:108301. [PMID: 38101551 DOI: 10.1016/j.biotechadv.2023.108301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/12/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Assembling DNA fragments is a fundamental manipulation of cloning microalgal genes and carrying out microalgal synthetic biological studies. From the earliest DNA recombination to current trait and metabolic pathway engineering, we are always accompanied by homology-based DNA assembling. The improvement and modification of pioneering DNA assembling techniques and the combinational applications of the available assembling techniques have diversified and complicated the literature environment and aggravated our identification of the core and pioneering methodologies. Identifying the core assembling methodologies and using them appropriately and flourishing them even are important for researchers. A group of microalgae have been evolving as the models for both industrial applications and biological studies. DNA assembling requires researchers to know the methods available and their improvements and evolvements. In this review, we summarized the pioneering (core; leading) DNA assembling techniques developed previously, extended these techniques to their modifications, improvements and their combinations, and highlighted their applications in eukaryotic microalgae. We predicted that the gene(s) will be assembled into a functional cluster (e.g., those involving in a metabolic pathway, and stacked on normal microalgal chromosomes, their artificial episomes and looming artificial chromosomes. It should be particularly pointed out that the techniques mentioned in this review are classified according to the strategy used to assemble the final construct.
Collapse
Affiliation(s)
- Li Guo
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Guanpin Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China; Institutes of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China; MoE Laboratory of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China; Key Laboratory of Marine Genetics and Breeding of Ministry of Education, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
2
|
Bello AJ, Popoola A, Okpuzor J, Ihekwaba-Ndibe AE, Olorunniji FJ. A Genetic Circuit Design for Targeted Viral RNA Degradation. Bioengineering (Basel) 2023; 11:22. [PMID: 38247899 PMCID: PMC10813695 DOI: 10.3390/bioengineering11010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
Advances in synthetic biology have led to the design of biological parts that can be assembled in different ways to perform specific functions. For example, genetic circuits can be designed to execute specific therapeutic functions, including gene therapy or targeted detection and the destruction of invading viruses. Viral infections are difficult to manage through drug treatment. Due to their high mutation rates and their ability to hijack the host's ribosomes to make viral proteins, very few therapeutic options are available. One approach to addressing this problem is to disrupt the process of converting viral RNA into proteins, thereby disrupting the mechanism for assembling new viral particles that could infect other cells. This can be done by ensuring precise control over the abundance of viral RNA (vRNA) inside host cells by designing biological circuits to target vRNA for degradation. RNA-binding proteins (RBPs) have become important biological devices in regulating RNA processing. Incorporating naturally upregulated RBPs into a gene circuit could be advantageous because such a circuit could mimic the natural pathway for RNA degradation. This review highlights the process of viral RNA degradation and different approaches to designing genetic circuits. We also provide a customizable template for designing genetic circuits that utilize RBPs as transcription activators for viral RNA degradation, with the overall goal of taking advantage of the natural functions of RBPs in host cells to activate targeted viral RNA degradation.
Collapse
Affiliation(s)
- Adebayo J. Bello
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (A.J.B.); (A.P.)
- Department of Biological Sciences, Redeemer’s University, Ede 232101, Osun State, Nigeria
| | - Abdulgafar Popoola
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (A.J.B.); (A.P.)
- Department of Medical Laboratory Science, Kwara State University, Malete, Ilorin 241102, Kwara State, Nigeria
| | - Joy Okpuzor
- Department of Cell Biology & Genetics, University of Lagos, Akoka, Lagos 101017, Lagos State, Nigeria;
| | | | - Femi J. Olorunniji
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (A.J.B.); (A.P.)
| |
Collapse
|
3
|
Abioye J, Lawson-Williams M, Lecanda A, Calhoon B, McQue AL, Colloms SD, Stark WM, Olorunniji FJ. High fidelity one-pot DNA assembly using orthogonal serine integrases. Biotechnol J 2023; 18:e2200411. [PMID: 36504358 DOI: 10.1002/biot.202200411] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Large serine integrases (LSIs, derived from temperate phages) have been adapted for use in a multipart DNA assembly process in vitro, called serine integrase recombinational assembly (SIRA). The versatility, efficiency, and fidelity of SIRA is limited by lack of a sufficient number of LSIs whose activities have been characterized in vitro. METHODS AND MAJOR RESULTS In this report, we compared the activities in vitro of 10 orthogonal LSIs to explore their suitability for multiplex SIRA reactions. We found that Bxb1, ϕR4, and TG1 integrases were the most active among the set we studied, but several others were also usable. As proof of principle, we demonstrated high-efficiency one-pot assembly of six DNA fragments (made by PCR) into a 7.5 kb plasmid that expresses the enzymes of the β-carotenoid pathway in Escherichia coli, using six different LSIs. We further showed that a combined approach using a few highly active LSIs, each acting on multiple pairs of att sites with distinct central dinucleotides, can be used to scale up "poly-part" gene assembly and editing. CONCLUSIONS AND IMPLICATIONS We conclude that use of multiple orthogonal integrases may be the most predictable, efficient, and programmable approach for SIRA and other in vitro applications.
Collapse
Affiliation(s)
- Jumai Abioye
- School of Molecular Biosciences, University of Glasgow, Glasgow, UK
| | - Makeba Lawson-Williams
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Liverpool, UK
| | - Alicia Lecanda
- School of Molecular Biosciences, University of Glasgow, Glasgow, UK
| | - Brecken Calhoon
- School of Molecular Biosciences, University of Glasgow, Glasgow, UK
| | - Arlene L McQue
- School of Molecular Biosciences, University of Glasgow, Glasgow, UK
| | - Sean D Colloms
- School of Molecular Biosciences, University of Glasgow, Glasgow, UK
| | - W Marshall Stark
- School of Molecular Biosciences, University of Glasgow, Glasgow, UK
| | - Femi J Olorunniji
- School of Molecular Biosciences, University of Glasgow, Glasgow, UK
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
4
|
Efficient targeted transgenesis of large donor DNA into multiple mouse genetic backgrounds using bacteriophage Bxb1 integrase. Sci Rep 2022; 12:5424. [PMID: 35361849 PMCID: PMC8971409 DOI: 10.1038/s41598-022-09445-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
The development of mouse models of human disease and synthetic biology research by targeted transgenesis of large DNA constructs represent a significant genetic engineering hurdle. We developed an efficient, precise, single-copy integration of large transgenes directly into zygotes using multiple mouse genetic backgrounds. We used in vivo Bxb1 mediated recombinase-mediated cassette exchange (RMCE) with a transgene “landing pad” composed of dual heterologous Bxb1 attachment (att) sites in cis, within the Gt(ROSA)26Sor safe harbor locus. RMCE of donor was achieved by microinjection of vector DNA carrying cognate attachment sites flanking the donor transgene with Bxb1-integrase mRNA. This approach achieves perfect vector-free integration of donor constructs at efficiencies > 40% with up to ~ 43 kb transgenes. Coupled with a nanopore-based Cas9-targeted sequencing (nCATS), complete verification of precise insertion sequence was achieved. As a proof-of-concept we describe the development of C57BL/6J and NSG Krt18-ACE2 models for SARS-CoV2 research with verified heterozygous N1 animals within ~ 4 months. Additionally, we created a series of mice with diverse backgrounds carrying a single att site including FVB/NJ, PWK/PhJ, NOD/ShiLtJ, CAST/EiJ and DBA/2J allowing for rapid transgene insertion. Combined, this system enables predictable, rapid development with simplified characterization of precisely targeted transgenic animals across multiple genetic backgrounds.
Collapse
|
5
|
Elias A, Kassis H, Elkader SA, Gritsenko N, Nahmad A, Shir H, Younis L, Shannan A, Aihara H, Prag G, Yagil E, Kolot M. HK022 bacteriophage Integrase mediated RMCE as a potential tool for human gene therapy. Nucleic Acids Res 2020; 48:12804-12816. [PMID: 33270859 PMCID: PMC7736782 DOI: 10.1093/nar/gkaa1140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/31/2020] [Accepted: 11/08/2020] [Indexed: 12/25/2022] Open
Abstract
HK022 coliphage site-specific recombinase Integrase (Int) can catalyze integrative site-specific recombination and recombinase-mediated cassette exchange (RMCE) reactions in mammalian cell cultures. Owing to the promiscuity of the 7 bp overlap sequence in its att sites, active ‘attB’ sites flanking human deleterious mutations were previously identified that may serve as substrates for RMCE reactions for future potential gene therapy. However, the wild type Int proved inefficient in catalyzing such RMCE reactions. To address this low efficiency, variants of Int were constructed and examined by integrative site-specific recombination and RMCE assays in human cells using native ‘attB’ sites. As a proof of concept, various Int derivatives have demonstrated successful RMCE reactions using a pair of native ‘attB’ sites that were inserted as a substrate into the human genome. Moreover, successful RMCE reactions were demonstrated in native locations of the human CTNS and DMD genes whose mutations are responsible for Cystinosis and Duchene Muscular Dystrophy diseases, respectively. This work provides a steppingstone for potential downstream therapeutic applications.
Collapse
Affiliation(s)
- Amer Elias
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry &Biophysics, Tel-Aviv University, Tel-Aviv, Israel
| | - Hala Kassis
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry &Biophysics, Tel-Aviv University, Tel-Aviv, Israel
| | - Suha Abd Elkader
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry &Biophysics, Tel-Aviv University, Tel-Aviv, Israel
| | - Natasha Gritsenko
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry &Biophysics, Tel-Aviv University, Tel-Aviv, Israel
| | - Alessio Nahmad
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry &Biophysics, Tel-Aviv University, Tel-Aviv, Israel
| | - Hodaya Shir
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry &Biophysics, Tel-Aviv University, Tel-Aviv, Israel
| | - Liana Younis
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry &Biophysics, Tel-Aviv University, Tel-Aviv, Israel
| | - Atheer Shannan
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry &Biophysics, Tel-Aviv University, Tel-Aviv, Israel
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota TwinCities, Minneapolis, MN, 55455, USA
| | - Gali Prag
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry &Biophysics, Tel-Aviv University, Tel-Aviv, Israel
| | - Ezra Yagil
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry &Biophysics, Tel-Aviv University, Tel-Aviv, Israel
| | - Mikhail Kolot
- Department of Biochemistry and Molecular Biology, School of Neurobiology, Biochemistry &Biophysics, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
6
|
Olorunniji FJ, Lawson-Williams M, McPherson AL, Paget JE, Stark WM, Rosser SJ. Control of ϕC31 integrase-mediated site-specific recombination by protein trans-splicing. Nucleic Acids Res 2019; 47:11452-11460. [PMID: 31667500 PMCID: PMC6868429 DOI: 10.1093/nar/gkz936] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 09/30/2019] [Accepted: 10/07/2019] [Indexed: 11/13/2022] Open
Abstract
Serine integrases are emerging as core tools in synthetic biology and have applications in biotechnology and genome engineering. We have designed a split-intein serine integrase-based system with potential for regulation of site-specific recombination events at the protein level in vivo. The ϕC31 integrase was split into two extein domains, and intein sequences (Npu DnaEN and Ssp DnaEC) were attached to the two termini to be fused. Expression of these two components followed by post-translational protein trans-splicing in Escherichia coli generated a fully functional ϕC31 integrase. We showed that protein splicing is necessary for recombination activity; deletion of intein domains or mutation of key intein residues inactivated recombination. We used an invertible promoter reporter system to demonstrate a potential application of the split intein-regulated site-specific recombination system in building reversible genetic switches. We used the same split inteins to control the reconstitution of a split Integrase-Recombination Directionality Factor fusion (Integrase-RDF) that efficiently catalysed the reverse attR x attL recombination. This demonstrates the potential for split-intein regulation of the forward and reverse reactions using the integrase and the integrase-RDF fusion, respectively. The split-intein integrase is a potentially versatile, regulatable component for building synthetic genetic circuits and devices.
Collapse
Affiliation(s)
- Femi J Olorunniji
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK
| | - Makeba Lawson-Williams
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK
| | - Arlene L McPherson
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Jane E Paget
- UK Centre for Mammalian Synthetic Biology at the Institute of Quantitative Biology, Biochemistry, and Biotechnology, SynthSys, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JD, UK.,Institute for Bioengineering, University of Edinburgh, Faraday Building, The King's Buildings, Edinburgh, 2 EH9 3DW, UK
| | - W Marshall Stark
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Susan J Rosser
- UK Centre for Mammalian Synthetic Biology at the Institute of Quantitative Biology, Biochemistry, and Biotechnology, SynthSys, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JD, UK.,Institute for Bioengineering, University of Edinburgh, Faraday Building, The King's Buildings, Edinburgh, 2 EH9 3DW, UK
| |
Collapse
|
7
|
Zhang JJ, Tang X, Moore BS. Genetic platforms for heterologous expression of microbial natural products. Nat Prod Rep 2019; 36:1313-1332. [PMID: 31197291 PMCID: PMC6750982 DOI: 10.1039/c9np00025a] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Covering: 2005 up to 2019Natural products are of paramount importance in human medicine. Not only are most antibacterial and anticancer drugs derived directly from or inspired by natural products, many other branches of medicine, such as immunology, neurology, and cardiology, have similarly benefited from natural product-based drugs. Typically, the genetic material required to synthesize a microbial specialized product is arranged in a multigene biosynthetic gene cluster (BGC), which codes for proteins associated with molecule construction, regulation, and transport. The ability to connect natural product compounds to BGCs and vice versa, along with ever-increasing knowledge of biosynthetic machineries, has spawned the field of genomics-guided natural product genome mining for the rational discovery of new chemical entities. One significant challenge in the field of natural product genome mining is how to rapidly link orphan biosynthetic genes to their associated chemical products. This review highlights state-of-the-art genetic platforms to identify, interrogate, and engineer BGCs from diverse microbial sources, which can be broken into three stages: (1) cloning and isolation of genomic loci, (2) heterologous expression in a host organism, and (3) genetic manipulation of cloned pathways. In the future, we envision natural product genome mining will be rapidly accelerated by de novo DNA synthesis and refactoring of whole biosynthetic pathways in combination with systematic heterologous expression methodologies.
Collapse
Affiliation(s)
- Jia Jia Zhang
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA.
| | - Xiaoyu Tang
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA.
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA. and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
8
|
Modular and Integrative Vectors for Synthetic Biology Applications in Streptomyces spp. Appl Environ Microbiol 2019; 85:AEM.00485-19. [PMID: 31175189 DOI: 10.1128/aem.00485-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/22/2019] [Indexed: 01/28/2023] Open
Abstract
With the development of synthetic biology in the field of (actinobacterial) specialized metabolism, new tools are needed for the design or refactoring of biosynthetic gene clusters. If libraries of synthetic parts (such as promoters or ribosome binding sites) and DNA cloning methods have been developed, to our knowledge, not many vectors designed for the flexible cloning of biosynthetic gene clusters have been constructed. We report here the construction of a set of 12 standardized and modular vectors designed to afford the construction or the refactoring of biosynthetic gene clusters in Streptomyces species, using a large panel of cloning methods. Three different resistance cassettes and four orthogonal integration systems are proposed. In addition, FLP recombination target sites were incorporated to allow the recycling of antibiotic markers and to limit the risks of unwanted homologous recombination in Streptomyces strains when several vectors are used. The functionality and proper integration of the vectors in three commonly used Streptomyces strains, as well as the functionality of the Flp-catalyzed excision, were all confirmed. To illustrate some possible uses of our vectors, we refactored the albonoursin gene cluster from Streptomyces noursei using the BioBrick assembly method. We also used the seamless ligase chain reaction cloning method to assemble a transcription unit in one of the vectors and genetically complement a mutant strain.IMPORTANCE One of the strategies employed today to obtain new bioactive molecules with potential applications for human health (for example, antimicrobial or anticancer agents) is synthetic biology. Synthetic biology is used to biosynthesize new unnatural specialized metabolites or to force the expression of otherwise silent natural biosynthetic gene clusters. To assist the development of synthetic biology in the field of specialized metabolism, we constructed and are offering to the community a set of vectors that were intended to facilitate DNA assembly and integration in actinobacterial chromosomes. These vectors are compatible with various DNA cloning and assembling methods. They are standardized and modular, allowing the easy exchange of a module by another one of the same nature. Although designed for the assembly or the refactoring of specialized metabolite gene clusters, they have a broader potential utility, for example, for protein production or genetic complementation.
Collapse
|
9
|
Abstract
Serine integrases catalyze precise rearrangement of DNA through site-specific recombination of small sequences of DNA called attachment (att) sites. Unlike other site-specific recombinases, the recombination reaction driven by serine integrases is highly directional and can only be reversed in the presence of an accessory protein called a recombination directionality factor (RDF). The ability to control reaction directionality has led to the development of serine integrases as tools for controlled rearrangement and modification of DNA in synthetic biology, gene therapy, and biotechnology. This review discusses recent advances in serine integrase technologies focusing on their applications in genome engineering, DNA assembly, and logic and data storage devices.
Collapse
Affiliation(s)
- Christine A. Merrick
- School
of Biological Sciences, University of Edinburgh, Roger Land Building, Alexander Crum
Brown Road, Edinburgh EH9
3FF, U.K
| | - Jia Zhao
- Novo
Nordisk (China) Pharmaceuticals Co., Ltd., Lei Shing Hong Center, Guangshunnan Avenue, Beijing 100102, China
| | - Susan J. Rosser
- School
of Biological Sciences, University of Edinburgh, Roger Land Building, Alexander Crum
Brown Road, Edinburgh EH9
3FF, U.K
| |
Collapse
|
10
|
Olorunniji FJ, McPherson AL, Rosser SJ, Smith MCM, Colloms SD, Stark WM. Control of serine integrase recombination directionality by fusion with the directionality factor. Nucleic Acids Res 2017; 45:8635-8645. [PMID: 28666339 PMCID: PMC5737554 DOI: 10.1093/nar/gkx567] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/29/2017] [Indexed: 11/13/2022] Open
Abstract
Bacteriophage serine integrases are extensively used in biotechnology and synthetic biology for assembly and rearrangement of DNA sequences. Serine integrases promote recombination between two different DNA sites, attP and attB, to form recombinant attL and attR sites. The 'reverse' reaction requires another phage-encoded protein called the recombination directionality factor (RDF) in addition to integrase; RDF activates attL × attR recombination and inhibits attP × attB recombination. We show here that serine integrases can be fused to their cognate RDFs to create single proteins that catalyse efficient attL × attR recombination in vivo and in vitro, whereas attP × attB recombination efficiency is reduced. We provide evidence that activation of attL × attR recombination involves intra-subunit contacts between the integrase and RDF moieties of the fusion protein. Minor changes in the length and sequence of the integrase-RDF linker peptide did not affect fusion protein recombination activity. The efficiency and single-protein convenience of integrase-RDF fusion proteins make them potentially very advantageous for biotechnology/synthetic biology applications. Here, we demonstrate efficient gene cassette replacement in a synthetic metabolic pathway gene array as a proof of principle.
Collapse
Affiliation(s)
- Femi J Olorunniji
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Arlene L McPherson
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Susan J Rosser
- SynthSys - Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Roger Land Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JD, UK
| | - Margaret C M Smith
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Sean D Colloms
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - W Marshall Stark
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| |
Collapse
|