1
|
Chu SSH, Xing G, Ling H. The role of human Shu complex in ATP-dependent regulation of RAD51 filaments during homologous recombination-associated DNA damage response. J Biol Chem 2025:110212. [PMID: 40345587 DOI: 10.1016/j.jbc.2025.110212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/25/2025] [Accepted: 05/04/2025] [Indexed: 05/11/2025] Open
Abstract
Error-free DNA lesion bypass is an important pathway in DNA damage tolerance. The Shu complex facilitates this process by promoting homologous recombination (HR) to bypass DNA damage. Biochemical analysis of the human Shu complex homolog, hSWS1-SWSAP1, offers valuable insights into the HR-associated DNA damage response. Here, we biochemically characterized the human Shu complex and examined its interactions with RAD51 filaments, which are essential in HR. Using fluorescence polarization assays, we first revealed that hSWS1-SWSAP1 preferentially binds DNA with an exposed 5' end in the presence of adenine nucleotides. We then investigated and validated the DNA-stimulated ATPase activity of hSWS1-SWSAP1 through site-specific mutagenesis, revealing that DNA with an exposed 5' end is the most efficient in enhancing this activity. Furthermore, we showed that hSWS1-SWSAP1 initially interacts with RAD51 filaments at the 5' end and modulates the properties of the nucleoprotein filaments using fluorescence-based assays. Our findings revealed that hSWS1-SWSAP1 induces conformational changes in RAD51 filaments in an ATP-hydrolysis-dependent manner, while its stabilization of the filaments depends on ATP binding. This work provides mechanistic insights into the regulation of RAD51 filaments in HR-associated DNA damage tolerance.
Collapse
Affiliation(s)
- Sam S H Chu
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Guangxin Xing
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Hong Ling
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada, N6A 5C1.
| |
Collapse
|
2
|
Hondros AD, Young MM, Jaimes FE, Kinkead J, Thompson RJ, Melander C, Cavanagh J. Two-Component System Sensor Kinase Inhibitors Target the ATP-Lid of PmrB to Disrupt Colistin Resistance in Acinetobacter baumannii. Biochemistry 2025; 64:1317-1327. [PMID: 40056100 DOI: 10.1021/acs.biochem.4c00789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Two-component systems serve as ubiquitous communication modules that enable bacteria to detect and respond to various stimuli by regulating cellular processes such as growth, viability, and, most notably, antimicrobial resistance. Classical two-component systems consist of two proteins: an initial membrane-bound sensor histidine kinase and a DNA-binding response regulator that induces the appropriate response within the cell. Numerous studies have implicated the PmrAB two-component system in facilitating resistance to the last-resort antibiotic polymyxin E (colistin) in Acinetobacter baumannii. As initiators of the signaling pathways that elicit resistance, histidine kinases present ideal targets for developing antibiotic adjuvant drugs. Despite this, due to the membrane-bound nature of the histidine kinase PmrB, in vitro studies on PmrAB have been predominantly limited to the response regulator PmrA. In this work, we counter these limitations by producing a recombinant truncation of the cytosolic portion of PmrB (PmrBc) that retains its ATP binding, autophosphorylation, and phosphotransfer functions. Subsequently, in vivo phosphorylation assays using this protein construct allowed for the evaluation of five compounds (IMD-0354, NDM-265, NDM-455, NDM-463, and NDM-497) that act as PmrBc inhibitors capable of preventing autophosphorylation and phosphotransfer independently. These compounds have been shown to eliminate colistin resistance in vivo. Finally, these results, paired with mass spectrometry and limited proteolysis investigations, enabled us to determine the mechanism of action of these compounds as well as their likely binding site on the ATP-lid of PmrB.
Collapse
Affiliation(s)
- Alexander D Hondros
- Department of Biochemistry & Molecular Biology, Brody School of Medicine East Carolina University, Greenville, North Carolina 27834, United States
| | - Milah M Young
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Felicia E Jaimes
- Department of Biochemistry & Molecular Biology, Brody School of Medicine East Carolina University, Greenville, North Carolina 27834, United States
| | - Jude Kinkead
- Department of Biochemistry & Molecular Biology, Brody School of Medicine East Carolina University, Greenville, North Carolina 27834, United States
| | - Richele J Thompson
- Department of Biochemistry & Molecular Biology, Brody School of Medicine East Carolina University, Greenville, North Carolina 27834, United States
| | - Christian Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - John Cavanagh
- Department of Biochemistry & Molecular Biology, Brody School of Medicine East Carolina University, Greenville, North Carolina 27834, United States
| |
Collapse
|
3
|
Chu SSH, Xing G, Jha VK, Ling H. The Shu complex is an ATPase that regulates Rad51 filaments during homologous recombination in the DNA damage response. DNA Repair (Amst) 2025; 145:103792. [PMID: 39647428 DOI: 10.1016/j.dnarep.2024.103792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/15/2024] [Accepted: 11/24/2024] [Indexed: 12/10/2024]
Abstract
Rad51 filaments are Rad51-coated single-stranded DNA and essential in homologous recombination (HR). The yeast Shu complex (Shu) is a conserved regulator of homologous recombination, working through its modulation on Rad51 filaments to direct HR-associated DNA damage response. However, the biochemical properties of Shu remain unclear, which hinders molecular insights into Shu's role in HR and the DNA damage response. In this work, we biochemically characterized Shu and analyzed its molecular actions on single-stranded DNA and Rad51 filaments. First, we revealed that Shu preferentially binds fork-shaped DNA with 20nt ssDNA components. Then, we identified and validated, through site-specific mutagenesis, that Shu is an ATPase and hydrolyzes ATP in a DNA-dependent manner. Furthermore, we showed that Shu interacts with ssDNA and Rad51 filaments and alters the properties of ssDNA and the filaments with a 5'-3' polarity. The alterations depend on the ATP hydrolysis of Shu, suggesting that the ATPase activity of Shu is important in regulating its functions. The preference of Shu for acting on the 5' end of Rad51 filaments aligns with the observation that Shu promotes lesion bypass at the lagging strand of a replication fork. Our work on Shu, a prototype modulator of Rad51 filaments in eukaryotes, provides a general molecular mechanism for Rad51-mediated error-free DNA lesion bypass.
Collapse
Affiliation(s)
- Sam S H Chu
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Guangxin Xing
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Vikash K Jha
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Hong Ling
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada.
| |
Collapse
|
4
|
Owens MC, Shen H, Yanas A, Mendoza-Figueroa MS, Lavorando E, Wei X, Shweta H, Tang HY, Goldman YE, Liu KF. Specific catalytically impaired DDX3X mutants form sexually dimorphic hollow condensates. Nat Commun 2024; 15:9553. [PMID: 39500865 PMCID: PMC11538506 DOI: 10.1038/s41467-024-53636-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/12/2024] [Indexed: 11/08/2024] Open
Abstract
Mutations in the RNA helicase DDX3X, implicated in various cancers and neurodevelopmental disorders, often impair RNA unwinding and translation. However, the mechanisms underlying the impairment and the differential interactions of DDX3X mutants with wild-type (WT) X-linked DDX3X and Y-linked homolog DDX3Y remain elusive. This study reveals that specific DDX3X mutants more frequently found in disease form distinct hollow condensates in cells. Using a combined structural, biochemical, and single-molecule microscopy study, we show that reduced ATPase and RNA release activities contribute to condensate formation and these catalytic deficits result from inhibiting the catalytic cycle at multiple steps. Proteomic investigations further demonstrate that these hollow condensates sequester WT DDX3X/DDX3Y and other proteins crucial for diverse signaling pathways. WT DDX3X enhances the dynamics of heterogeneous mutant/WT hollow condensates more effectively than DDX3Y. These findings offer valuable insights into the catalytic defects of specific DDX3X mutants and their differential interactions with wild-type DDX3X and DDX3Y, potentially explaining sex biases in disease.
Collapse
Affiliation(s)
- Michael C Owens
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hui Shen
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Amber Yanas
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Maria Saraí Mendoza-Figueroa
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ellen Lavorando
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xiaoyu Wei
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Him Shweta
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Departments of Pharmacology and Molecular and Cellular Biology, University of California at Davis, Davis, CA, 95616, USA
| | - Hsin-Yao Tang
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Yale E Goldman
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Departments of Pharmacology and Molecular and Cellular Biology, University of California at Davis, Davis, CA, 95616, USA.
| | - Kathy Fange Liu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Penn Institute for RNA Innovation, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
5
|
Owens MC, Shen H, Yanas A, Mendoza-Figueroa MS, Lavorando E, Wei X, Shweta H, Tang HY, Goldman YE, Liu KF. Mutant forms of DDX3X with diminished catalysis form hollow condensates that exhibit sex-specific regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.19.533240. [PMID: 38076929 PMCID: PMC10705264 DOI: 10.1101/2023.03.19.533240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Mutations in the RNA helicase DDX3X, implicated in various cancers and neurodevelopmental disorders, often impair RNA unwinding and translation. However, the mechanisms underlying this impairment and the differential interactions of DDX3X mutants with wild-type (WT) X-linked DDX3X and Y-linked homolog DDX3Y remain elusive. This study reveals that specific DDX3X mutants more frequently found in disease form distinct hollow condensates in cells. Using a combined structural, biochemical, and single-molecule microscopy study, we show that reduced ATPase and RNA release activities contribute to condensate formation and the catalytic deficits result from inhibiting the catalytic cycle at multiple steps. Proteomic investigations further demonstrate that these hollow condensates sequester WT DDX3X/DDX3Y and other proteins crucial for diverse signaling pathways. WT DDX3X enhances the dynamics of heterogeneous mutant/WT hollow condensates more effectively than DDX3Y. These findings offer valuable insights into the catalytic defects of specific DDX3X mutants and their differential interactions with wild-type DDX3X and DDX3Y, potentially explaining sex biases in disease.
Collapse
|
6
|
Wilkinson IVL, Pfanzelt M, Sieber SA. Functionalised Cofactor Mimics for Interactome Discovery and Beyond. Angew Chem Int Ed Engl 2022; 61:e202201136. [PMID: 35286003 PMCID: PMC9401033 DOI: 10.1002/anie.202201136] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Indexed: 11/09/2022]
Abstract
Cofactors are required for almost half of all enzyme reactions, but their functions and binding partners are not fully understood even after decades of research. Functionalised cofactor mimics that bind in place of the unmodified cofactor can provide answers, as well as expand the scope of cofactor activity. Through chemical proteomics approaches such as activity-based protein profiling, the interactome and localisation of the native cofactor in its physiological environment can be deciphered and previously uncharacterised proteins annotated. Furthermore, cofactors that supply functional groups to substrate biomolecules can be hijacked by mimics to site-specifically label targets and unravel the complex biology of post-translational protein modification. The diverse activity of cofactors has inspired the design of mimics for use as inhibitors, antibiotic therapeutics, and chemo- and biosensors, and cofactor conjugates have enabled the generation of novel enzymes and artificial DNAzymes.
Collapse
Affiliation(s)
- Isabel V. L. Wilkinson
- Centre for Functional Protein AssembliesTechnical University of MunichErnst-Otto-Fischer-Straße 885748GarchingGermany
| | - Martin Pfanzelt
- Centre for Functional Protein AssembliesTechnical University of MunichErnst-Otto-Fischer-Straße 885748GarchingGermany
| | - Stephan A. Sieber
- Centre for Functional Protein AssembliesTechnical University of MunichErnst-Otto-Fischer-Straße 885748GarchingGermany
| |
Collapse
|
7
|
Wilkinson IVL, Pfanzelt M, Sieber SA. Funktionalisierte Cofaktor‐Analoga für die Erforschung von Interaktomen und darüber hinaus. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Isabel V. L. Wilkinson
- Centre for Functional Protein Assemblies Technische Universität München Ernst-Otto-Fischer-Straße 8 85748 Garching Deutschland
| | - Martin Pfanzelt
- Centre for Functional Protein Assemblies Technische Universität München Ernst-Otto-Fischer-Straße 8 85748 Garching Deutschland
| | - Stephan A. Sieber
- Centre for Functional Protein Assemblies Technische Universität München Ernst-Otto-Fischer-Straße 8 85748 Garching Deutschland
| |
Collapse
|
8
|
Qing T, Liu J, Liu F, Mitchell DC, Beresis RT, Gordan JD. Methods to assess small molecule allosteric modulators of the STRAD pseudokinase. Methods Enzymol 2022; 667:427-453. [PMID: 35525550 DOI: 10.1016/bs.mie.2022.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
With the increased appreciation of the biological relevance of pseudokinase (PSK) allostery, the broadening of small molecule strategies to target PSK function is of particular importance. We and others have pursued the development of small molecule allosteric modulators of the STRAD pseudokinase by targeting its ATP binding pocket. The purpose of this effort is to modulate the function of the LKB1 tumor suppressor kinase, which exists in a trimer with the STRAD PSK and the adaptor protein MO25. Here we provide detailed guidance regarding the different methods we have used for medium throughput screening to identify STRAD ligands and measure their impact on LKB1 kinase activity. Our experience supports preferential use of direct measurements of LKB1 kinase activity, and demonstrates the limitations of indirect assessment methods in the development trans-acting allosteric modulators.
Collapse
Affiliation(s)
- Tingting Qing
- Chempartner Co, Ltd., Shanghai, China; Chempartner Co, Ltd., South San Francisco, CA, United States
| | - Jin Liu
- Chempartner Co, Ltd., Shanghai, China; Chempartner Co, Ltd., South San Francisco, CA, United States
| | - Fen Liu
- Chempartner Co, Ltd., Shanghai, China; Chempartner Co, Ltd., South San Francisco, CA, United States
| | - Dom C Mitchell
- Division of Hematology Oncology and Quantitative Biosciences Institute, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Richard T Beresis
- Chempartner Co, Ltd., Shanghai, China; Chempartner Co, Ltd., South San Francisco, CA, United States
| | - John D Gordan
- Division of Hematology Oncology and Quantitative Biosciences Institute, University of California, San Francisco (UCSF), San Francisco, CA, United States.
| |
Collapse
|
9
|
Liang Q, Liu M, Li J, Tong R, Hu Y, Bai L, Shi J. NAE modulators: A potential therapy for gastric carcinoma. Eur J Med Chem 2022; 231:114156. [DOI: 10.1016/j.ejmech.2022.114156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 12/24/2022]
|
10
|
Woodbury DJ, Whitt EC, Coffman RE. A review of TNP-ATP in protein binding studies: benefits and pitfalls. BIOPHYSICAL REPORTS 2021; 1:100012. [PMID: 36425312 PMCID: PMC9680771 DOI: 10.1016/j.bpr.2021.100012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 08/03/2021] [Indexed: 06/16/2023]
Abstract
We review 50 years of use of 2',3'-O-trinitrophenyl (TNP)-ATP, a fluorescently tagged ATP analog. It has been extensively used to detect binding interactions of ATP to proteins and to measure parameters of those interactions such as the dissociation constant, Kd, or inhibitor dissociation constant, Ki. TNP-ATP has also found use in other applications, for example, as a fluorescence marker in microscopy, as a FRET pair, or as an antagonist (e.g., of P2X receptors). However, its use in protein binding studies has limitations because the TNP moiety often enhances binding affinity, and the fluorescence changes that occur with binding can be masked or mimicked in unexpected ways. The goal of this review is to provide a clear perspective of the pros and cons of using TNP-ATP to allow for better experimental design and less ambiguous data in future experiments using TNP-ATP and other TNP nucleotides.
Collapse
Affiliation(s)
- Dixon J. Woodbury
- Department of Cell Biology and Physiology
- Neuroscience Center, Brigham Young University, Provo, Utah
| | | | | |
Collapse
|
11
|
Méndez AAE, Mangialavori IC, Cabrera AV, Benavides MP, Vázquez-Ramos JM, Gallego SM. Tyr-nitration in maize CDKA;1 results in lower affinity for ATP binding. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140479. [PMID: 32599297 DOI: 10.1016/j.bbapap.2020.140479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022]
Abstract
Cyclin-dependent kinase A (CDKA) is a key component for cell cycle progression. The catalytic kinase activity depends on the protein's ability to form an active complex with cyclins and on phosphoregulatory mechanisms. Cell cycle arrest and plant growth impairment under abiotic stress have been linked to different molecular processes triggered by increased levels of reactive oxygen and nitrogen species (ROS and RNS). Among these, posttranslational modifications (PTMs) of key proteins such as CDKA;1 may be of significance. Herein, isolated maize embryo axes were subjected to sodium nitroprusside (SNP) as an inductor of nitrosative conditions to evaluate if CDKA;1 protein was a target for RNS. A high degree of protein nitration was detected; this included the specific Tyr-nitration of CDKA;1. Tyr15 and Tyr19, located at the ATP-binding site, were the selective targets for nitration according to both in silico analysis using the predictive software GPS-YNO2, and in vitro mass spectrometry studies of recombinant nitrated ZmCDKA;1. Spectrofluorometric measurements demonstrated a reduction of ZmCDKA;1-NO2 affinity for ATP. From these results, we conclude that Tyr nitration in CDKA;1 could act as an active modulator of cell cycle progression during redox stress.
Collapse
Affiliation(s)
- Andrea A E Méndez
- Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas "Profesor Alejandro C. Paladini" (IQUIFIB), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Irene C Mangialavori
- Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas "Profesor Alejandro C. Paladini" (IQUIFIB), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Andrea V Cabrera
- Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas "Profesor Alejandro C. Paladini" (IQUIFIB), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - María P Benavides
- Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas "Profesor Alejandro C. Paladini" (IQUIFIB), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Jorge M Vázquez-Ramos
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico
| | - Susana M Gallego
- Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas "Profesor Alejandro C. Paladini" (IQUIFIB), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| |
Collapse
|
12
|
Fraga JS, Sárkány Z, Silva A, Correia I, Pereira PJB, Macedo-Ribeiro S. Genetic code ambiguity modulates the activity of a C. albicans MAP kinase linked to cell wall remodeling. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:654-661. [PMID: 30797104 DOI: 10.1016/j.bbapap.2019.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/13/2019] [Accepted: 02/18/2019] [Indexed: 12/28/2022]
Abstract
The human fungal pathogen Candida albicans ambiguously decodes the universal leucine CUG codon predominantly as serine but also as leucine. C. albicans has a high capacity to survive and proliferate in adverse environments but the rate of leucine incorporation fluctuates in response to different stress conditions. C. albicans is adapted to tolerate this ambiguous translation through a mechanism that combines drastic decrease in CUG usage and reduction of CUG-encoded residues in conserved positions in the protein sequences. However, in a few proteins, the residues encoded by CUG codons are found in strictly conserved positions, suggesting that this genetic code alteration might have a functional impact. One such example is Cek1, a central signaling protein kinase that contains a single CUG-encoded residue at a conserved position, whose identity might regulate the correct flow of information across the MAPK cascade. Here we show that insertion of a leucine at the CUG-encoded position decreases the stability of Cek1, apparently without major structural alterations. In contrast, incorporation of a serine residue at the CUG position induces the autophosphorylation of the conserved tyrosine residue of the Cek1 231TEY233 motif, and increases its intrinsic kinase activity in vitro. These findings show that CUG ambiguity modulates the activity of Cek1, a key kinase directly linked to morphogenesis and virulence in C. albicans.
Collapse
Affiliation(s)
- Joana S Fraga
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Zsuzsa Sárkány
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Alexandra Silva
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Inês Correia
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Pedro José Barbosa Pereira
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Sandra Macedo-Ribeiro
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
| |
Collapse
|
13
|
Kikuchi S, Asakura Y, Imai M, Nakahira Y, Kotani Y, Hashiguchi Y, Nakai Y, Takafuji K, Bédard J, Hirabayashi-Ishioka Y, Mori H, Shiina T, Nakai M. A Ycf2-FtsHi Heteromeric AAA-ATPase Complex Is Required for Chloroplast Protein Import. THE PLANT CELL 2018; 30:2677-2703. [PMID: 30309901 PMCID: PMC6305978 DOI: 10.1105/tpc.18.00357] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/16/2018] [Accepted: 10/01/2018] [Indexed: 05/20/2023]
Abstract
Chloroplasts import thousands of nucleus-encoded preproteins synthesized in the cytosol through the TOC and TIC translocons on the outer and inner envelope membranes, respectively. Preprotein translocation across the inner membrane requires ATP; however, the import motor has remained unclear. Here, we report that a 2-MD heteromeric AAA-ATPase complex associates with the TIC complex and functions as the import motor, directly interacting with various translocating preproteins. This 2-MD complex consists of a protein encoded by the previously enigmatic chloroplast gene ycf2 and five related nuclear-encoded FtsH-like proteins, namely, FtsHi1, FtsHi2, FtsHi4, FtsHi5, and FtsH12. These components are each essential for plant viability and retain the AAA-type ATPase domain, but only FtsH12 contains the zinc binding active site generally conserved among FtsH-type metalloproteases. Furthermore, even the FtsH12 zinc binding site is dispensable for its essential function. Phylogenetic analyses suggest that all AAA-type members of the Ycf2/FtsHi complex including Ycf2 evolved from the chloroplast-encoded membrane-bound AAA-protease FtsH of the ancestral endosymbiont. The Ycf2/FtsHi complex also contains an NAD-malate dehydrogenase, a proposed key enzyme for ATP production in chloroplasts in darkness or in nonphotosynthetic plastids. These findings advance our understanding of this ATP-driven protein translocation system that is unique to the green lineage of photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Shingo Kikuchi
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Yukari Asakura
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Midori Imai
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Yoichi Nakahira
- College of Agriculture, Ibaraki University, Ami-cho, Inashiki, Ibaraki 300-0393, Japan
| | - Yoshiko Kotani
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Yasuyuki Hashiguchi
- Department of Biology, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Yumi Nakai
- Department of Biochemistry, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Kazuaki Takafuji
- CoMIT Omics Center, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Jocelyn Bédard
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | | | - Hitoshi Mori
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Takashi Shiina
- School of Human Environment Science, Kyoto Prefectural University, Sakyo-ku, Kyoto 606-8522, Japan
| | - Masato Nakai
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|