1
|
Weronika R, Kowalska M, Kaczmarek P. Comparative embryology of the squamate pancreas: Structural and 3D studies on the sand lizard (Lacerta agilis) and brown anole (Anolis sagrei). J Anat 2025. [PMID: 40405360 DOI: 10.1111/joa.14284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 05/06/2025] [Accepted: 05/09/2025] [Indexed: 05/24/2025] Open
Abstract
This study investigates the developmental processes of the pancreas in two squamate species: the sand lizard (Lacerta agilis, Laterata) and the brown anole (Anolis sagrei, Iguania). Utilizing histological serial sections, we generated 3D reconstructions of the pancreas and its associated structures. Through a comparative analysis, we identified shared developmental events, including the emergence of specific structures and the initiation of distinct processes, to elucidate patterns of pancreatic differentiation and morphology. The pancreas of the sand lizard originates from three buds, while that of the brown anole originates from only two. In the sand lizard, the adult-like pancreas has an elongated Y-shape, while in the brown anole, the pancreas resembles the letter T on its side. Despite the differences in shape, in both species, the pancreas consists of four parts: the splenic lobe, the head of the pancreas, and the upper and lower lobes. The distal end of the splenic lobe in both species forms a thickened region called the juxtasplenic body. In the brown anole, endocrine islets are found only in the splenic lobe, and there are no islets in the other parts of the embryonic pancreas. In contrast, two clusters were identified in the pancreas of the sand lizard: one within the juxtasplenic body and the smaller one located where the splenic lobe emerges from the head of the pancreas. Both species differ in the topology of the ducts. In the sand lizard, the cystic and hepatic ducts enter the upper lobe of the pancreas, pass into the head of the pancreas, and form the common bile duct, which drains into the duodenum. In the brown anole, the cystic and hepatic ducts run along the upper lobe of the pancreas, then enter the head of the pancreas and form the common bile duct, which drains into the duodenum. Based on similarities between the brown anole, varanid lizards, and snakes, we propose that there is a common developmental sequence in toxicoferans and the adult pancreas of the brown anole represents an intermediate condition between "typical," elongated three-lobed lizard morphology and the shortened and partially compact pancreas of varanid lizards. This adds another grade of variation within the evolutionary pathway leading to the compact pancreas of snakes. On the other hand, the development and the adult-like morphology of the sand lizard pancreas strongly resemble the "typical", plesiomorphic, lizard condition. This work contributes to a deeper understanding of squamate anatomy and may shed light on the evolution of the pancreas in this clade.
Collapse
Affiliation(s)
- Rupik Weronika
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Magdalena Kowalska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Paweł Kaczmarek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
2
|
Rasys AM, Pau SH, Irwin KE, Luo S, Menke DB, Lauderdale JD. Histological analysis of anterior eye development in the brown anole lizard (Anolis sagrei). J Anat 2025. [PMID: 39903527 DOI: 10.1111/joa.14226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 02/06/2025] Open
Abstract
For all vertebrates, the anterior eye structures work together to protect and nourish the eye while ensuring that light entering the eye is correctly focused on the retina. However, the anterior eye structure can vary significantly among different vertebrates, reflecting how the structures of the anterior eye have evolved to meet the specific visual needs of different vertebrate species. Although conserved pathways regulate fundamental aspects of anterior eye development in vertebrates, there may also be species-specific differences underlying structural variation. Our knowledge of the cellular and molecular mechanisms underlying the development of structures of the anterior eye comes mainly from work in mammals, chicks, some amphibians, and small teleosts such as zebrafish. Our understanding of anterior eye development would benefit from comparative molecular studies in diverse vertebrates. A promising lizard model is the brown anole, Anolis sagrei, which is easily raised in the laboratory and for which genome editing techniques exist. Here, we provide a detailed histological analysis of the development of the anterior structures of the eye in A. sagrei, which include the cornea, iris, ciliary body, lens, trabecular meshwork, and scleral ossicles. The development of the anterior segment in anoles follows a pattern similar to other vertebrates. The lens forms first, followed by the cornea, iris, ciliary body, and tissues involved in the outflow of the aqueous humor. The development of the iris and ciliary body begins temporally and then proceeds nasally. Scleral ossicle development is generally comparable to that reported for chicks and turtles. Anoles have a remarkably thin cornea and a flat ciliary body compared to the eyes of mammals and birds. This study highlights several features in anoles and represents a deeper understanding of reptile eye development.
Collapse
Affiliation(s)
- Ashley M Rasys
- Department of Cellular Biology, The University of Georgia, Athens, Georgia, USA
| | - Shana H Pau
- Department of Genetics, The University of Georgia, Athens, Georgia, USA
| | - Katherine E Irwin
- Department of Cellular Biology, The University of Georgia, Athens, Georgia, USA
| | - Sherry Luo
- Department of Genetics, The University of Georgia, Athens, Georgia, USA
| | - Douglas B Menke
- Department of Genetics, The University of Georgia, Athens, Georgia, USA
| | - James D Lauderdale
- Department of Cellular Biology, The University of Georgia, Athens, Georgia, USA
- Neuroscience Division of the Biomedical and Health Sciences Institute, The University of Georgia, Athens, Georgia, USA
| |
Collapse
|
3
|
Samudra SP, Park S, Esser EA, McDonald TP, Borges AM, Eggenschwiler J, Menke DB. A new cell culture resource for investigations of reptilian gene function. Development 2024; 151:dev204275. [PMID: 39576177 DOI: 10.1242/dev.204275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/20/2024] [Indexed: 12/02/2024]
Abstract
The establishment of CRISPR/Cas9 gene editing in Anolis sagrei has positioned this species as a powerful model for studies of reptilian gene function. To enhance this model, we developed an immortalized lizard fibroblast cell line (ASEC-1) for the exploration of reptilian gene function in cellular processes. We demonstrate the use of this cell line by scrutinizing the role of primary cilia in lizard Hedgehog (Hh) signaling. Using CRISPR/Cas9 mutagenesis, we disrupted the ift88 gene, which is required for ciliogenesis in diverse organisms. We determined that loss of itf88 from lizard cells leads to an absence of primary cilia, a partial derepression of gli1 transcription, and an inability of the cells to respond to the Smoothened agonist, SAG. Through a cross-species analysis of SAG-induced transcriptional responses in cultured limb bud cells, we further determined that ∼46% of genes induced as a response to Hh pathway activation in A. sagrei are also SAG responsive in Mus musculus limb bud cells. Our results highlight conserved and diverged aspects of Hh signaling in anoles and establish a new resource for investigations of reptilian gene function.
Collapse
Affiliation(s)
- Sukhada P Samudra
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Sungdae Park
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Elizabeth A Esser
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | | | - Arianna M Borges
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | | | - Douglas B Menke
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
4
|
Lofgren L, Nguyen NH, Kennedy P, Pérez-Pazos E, Fletcher J, Liao HL, Wang H, Zhang K, Ruytinx J, Smith AH, Ke YH, Cotter HVT, Engwall E, Hameed KM, Vilgalys R, Branco S. Suillus: an emerging model for the study of ectomycorrhizal ecology and evolution. THE NEW PHYTOLOGIST 2024; 242:1448-1475. [PMID: 38581203 PMCID: PMC11045321 DOI: 10.1111/nph.19700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/07/2024] [Indexed: 04/08/2024]
Abstract
Research on mycorrhizal symbiosis has been slowed by a lack of established study systems. To address this challenge, we have been developing Suillus, a widespread ecologically and economically relevant fungal genus primarily associated with the plant family Pinaceae, into a model system for studying ectomycorrhizal (ECM) associations. Over the last decade, we have compiled extensive genomic resources, culture libraries, a phenotype database, and protocols for manipulating Suillus fungi with and without their tree partners. Our efforts have already resulted in a large number of publicly available genomes, transcriptomes, and respective annotations, as well as advances in our understanding of mycorrhizal partner specificity and host communication, fungal and plant nutrition, environmental adaptation, soil nutrient cycling, interspecific competition, and biological invasions. Here, we highlight the most significant recent findings enabled by Suillus, present a suite of protocols for working with the genus, and discuss how Suillus is emerging as an important model to elucidate the ecology and evolution of ECM interactions.
Collapse
Affiliation(s)
- Lotus Lofgren
- Department of Biology, Duke University, 130 Science Dr., Durham, NC 27708, USA
| | - Nhu H. Nguyen
- Department of Tropical Plant and Soil Sciences, University of Hawai‘i at Māno, 3190 Maile Way, Honolulu, HI 96822, USA
| | - Peter Kennedy
- Department of Plant and Microbial Biology, University of Minnesota, 1475 Gortner Ave, Saint Paul, MN 55108, USA
- Department of Ecology, Evolution and Behavior, University of Minnesota, 1475 Gortner Ave, Saint Paul, MN 55108, USA
| | - Eduardo Pérez-Pazos
- Department of Ecology, Evolution and Behavior, University of Minnesota, 1475 Gortner Ave, Saint Paul, MN 55108, USA
| | - Jessica Fletcher
- Department of Integrative Biology, University of Colorado Denver 1151 Arapahoe St, SI 2071, Denver, CO 80204, USA
| | - Hui-Ling Liao
- North Florida Research and Education Center, University of Florida, 155 Research Rd Quincy, FL 3235, USA
- Department of Soil, Water and Ecosystem Sciences, University of Florida, 1692 McCarty Dr, Room 2181, Building A, Gainesville, FL 32611, USA
| | - Haihua Wang
- North Florida Research and Education Center, University of Florida, 155 Research Rd Quincy, FL 3235, USA
- Department of Soil, Water and Ecosystem Sciences, University of Florida, 1692 McCarty Dr, Room 2181, Building A, Gainesville, FL 32611, USA
| | - Kaile Zhang
- North Florida Research and Education Center, University of Florida, 155 Research Rd Quincy, FL 3235, USA
| | - Joske Ruytinx
- Research Group of Microbiology and Plant Genetics, Department of Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium, USA
| | - Alexander H. Smith
- Department of Integrative Biology, University of Colorado Denver 1151 Arapahoe St, SI 2071, Denver, CO 80204, USA
| | - Yi-Hong Ke
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 N University Ave, Ann Arbor, MI 48109, USA
| | - H. Van T. Cotter
- University of North Carolina at Chapel Hill Herbarium, 120 South Road, Chapel Hill, NC 27599, USA
| | - Eiona Engwall
- Department of Biology, University of North Carolina at Chapel Hill, 120 South Road, Chapel Hill, NC 27599, USA
| | - Khalid M. Hameed
- Department of Biology, Duke University, 130 Science Dr., Durham, NC 27708, USA
| | - Rytas Vilgalys
- Department of Biology, Duke University, 130 Science Dr., Durham, NC 27708, USA
| | - Sara Branco
- Department of Integrative Biology, University of Colorado Denver 1151 Arapahoe St, SI 2071, Denver, CO 80204, USA
| |
Collapse
|
5
|
Kircher BK, Stanley EL, Behringer RR. Anatomy of the female reproductive tract organs of the brown anole (Anolis sagrei). Anat Rec (Hoboken) 2024; 307:395-413. [PMID: 37506227 PMCID: PMC11683880 DOI: 10.1002/ar.25293] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/13/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
Female reproduction in squamate reptiles (lizards and snakes) is highly diverse and mode of reproduction, clutch size, and reproductive tract morphology all vary widely across this group of ~11,000 species. Recently, CRISPR genome editing techniques that require manipulation of the female reproductive anatomy have been developed in this group, making a more complete understanding of this anatomy essential. We describe the adult female reproductive anatomy of the model reptile the brown anole (Anolis sagrei). We show that the brown anole female reproductive tract has three distinct anterior-to-posterior regions, the infundibulum, the glandular uterus, and the nonglandular uterus. The infundibulum has a highly ciliated epithelial lip, a region where the epithelium is inverted so that cilia are present on the inside and outside of the tube. The glandular uterus has epithelial ducts that are patent with a lumen as well as acinar structures with a lumen. The nonglandular uterus has a heterogeneous morphology from anterior to posterior, with a highly folded, ciliated epithelium transitioning to a stratified squamous epithelium. This transition is accompanied by a loss of keratin-8 expression and together, these changes are similar to the morphological and gene expression changes that occur in the mammalian cervix. We recommend that description of the nonglandular uterus include the regional sub-specification of a "cervix" and "vagina" as this terminology change more accurately describes the morphology. Our data extend histological studies of reproductive organ morphology in reptiles and expand our understanding of the variation in reproductive system anatomy across squamates and vertebrates.
Collapse
Affiliation(s)
- Bonnie K. Kircher
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Edward L. Stanley
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32601
| | - Richard R. Behringer
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
6
|
Pruett JE, Hall JM, Tiatragul S, Warner DA. Nesting in Anolis Lizards: An Understudied Topic in a Well-Studied Clade. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.821115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Maternal nesting behavior in oviparous species strongly influences the environmental conditions their embryos experience during development. In turn, these early-life conditions have consequences for offspring phenotypes and many fitness components across an individual’s lifespan. Thus, identifying the evolutionary and ecological causes and effects of nesting behavior is a key goal of behavioral ecology. Studies of reptiles have contributed greatly to our understanding of how nesting behavior shapes offspring phenotypes. While some taxonomic groups have been used extensively to provide insights into this important area of biology, many groups remain poorly studied. For example, the squamate genus Anolis has served as a model to study behavior, ecology, and evolution, but research focused on Anolis nesting behavior and developmental plasticity is comparatively scarce. This dearth of empirical research may be attributed to logistical challenges (e.g., difficulty locating nests), biological factors (e.g., their single-egg clutches may hinder some experimental designs), and a historical focus on males in Anolis research. Although there is a gap in the literature concerning Anolis nesting behavior, interest in nesting ecology and developmental plasticity in this group has grown in recent years. In this paper, we (1) review existing studies of anole nesting ecology and developmental plasticity; (2) highlight areas of anole nesting ecology that are currently understudied and discuss how research in these areas can contribute to broader topics (e.g., maternal effects and global change biology); and (3) provide guidelines for studying anole nesting in the field. Overall, this review provides a foundation for establishing anoles as models to study nesting ecology and developmental plasticity.
Collapse
|
7
|
Feiner N, Brun-Usan M, Andrade P, Pranter R, Park S, Menke DB, Geneva AJ, Uller T. A single locus regulates a female-limited color pattern polymorphism in a reptile. SCIENCE ADVANCES 2022; 8:eabm2387. [PMID: 35263124 PMCID: PMC11633106 DOI: 10.1126/sciadv.abm2387] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Animal coloration is often expressed in periodic patterns that can arise from differential cell migration, yet how these processes are regulated remains elusive. We show that a female-limited polymorphism in dorsal patterning (diamond/chevron) in the brown anole is controlled by a single Mendelian locus. This locus contains the gene CCDC170 that is adjacent to, and coexpressed with, the Estrogen receptor-1 gene, explaining why the polymorphism is female limited. CCDC170 is an organizer of the Golgi-microtubule network underlying a cell's ability to migrate, and the two segregating alleles encode structurally different proteins. Our agent-based modeling of skin development demonstrates that, in principle, a change in cell migratory behaviors is sufficient to switch between the two morphs. These results suggest that CCDC170 might have been co-opted as a switch between color patterning morphs, likely by modulating cell migratory behaviors.
Collapse
Affiliation(s)
| | | | - Pedro Andrade
- CIBIO/InBIO Research Centre in Biodiversity and Genetic Resources, University of Porto, Campus Agrário de Vairão, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Robin Pranter
- Department of Biology, Lund University, Lund, Sweden
| | - Sungdae Park
- Department of Genetics, University of Georgia, Athens, GA, USA
| | | | - Anthony J. Geneva
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University–Camden, Camden, NJ, USA
| | - Tobias Uller
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
8
|
Rasys AM, Pau SH, Irwin KE, Luo S, Kim HQ, Wahle MA, Trainor PA, Menke DB, Lauderdale JD. Ocular elongation and retraction in foveated reptiles. Dev Dyn 2021; 250:1584-1599. [PMID: 33866663 PMCID: PMC10731578 DOI: 10.1002/dvdy.348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Pronounced asymmetric changes in ocular globe size during eye development have been observed in a number of species ranging from humans to lizards. In contrast, largely symmetric changes in globe size have been described for other species like rodents. We propose that asymmetric changes in the three-dimensional structure of the developing eye correlate with the types of retinal remodeling needed to produce areas of high photoreceptor density. To test this idea, we systematically examined three-dimensional aspects of globe size as a function of eye development in the bifoveated brown anole, Anolis sagrei. RESULTS During embryonic development, the anole eye undergoes dynamic changes in ocular shape. Initially spherical, the eye elongates in the presumptive foveal regions of the retina and then proceeds through a period of retraction that returns the eye to its spherical shape. During this period of retraction, pit formation and photoreceptor cell packing are observed. We found a similar pattern of elongation and retraction associated with the single fovea of the veiled chameleon, Chamaeleo calyptratus. CONCLUSIONS These results, together with those reported for other foveated species, support the idea that areas of high photoreceptor packing occur in regions where the ocular globe asymmetrically elongates and retracts during development.
Collapse
Affiliation(s)
- Ashley M. Rasys
- Department of Cellular Biology, The University of Georgia, Athens, Georgia
| | - Shana H. Pau
- Department of Genetics, The University of Georgia, Athens, Georgia
| | - Katherine E. Irwin
- Department of Cellular Biology, The University of Georgia, Athens, Georgia
| | - Sherry Luo
- Department of Genetics, The University of Georgia, Athens, Georgia
| | - Hannah Q. Kim
- Department of Cellular Biology, The University of Georgia, Athens, Georgia
| | | | - Paul A. Trainor
- Stowers Institute for Medical Research, Kansas City, Missouri
- Department of Anatomy & Cell Biology, The University of Kansas School of Medicine, Kansas City, Kansas
| | - Douglas B. Menke
- Department of Genetics, The University of Georgia, Athens, Georgia
| | - James D. Lauderdale
- Department of Cellular Biology, The University of Georgia, Athens, Georgia
- Neuroscience Division of the Biomedical and Translational Sciences Institute, The University of Georgia, Athens, Georgia
| |
Collapse
|
9
|
Kraatz B, Belabbas R, Fostowicz-Frelik Ł, Ge DY, Kuznetsov AN, Lang MM, López-Torres S, Mohammadi Z, Racicot RA, Ravosa MJ, Sharp AC, Sherratt E, Silcox MT, Słowiak J, Winkler AJ, Ruf I. Lagomorpha as a Model Morphological System. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.636402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Due to their global distribution, invasive history, and unique characteristics, European rabbits are recognizable almost anywhere on our planet. Although they are members of a much larger group of living and extinct mammals [Mammalia, Lagomorpha (rabbits, hares, and pikas)], the group is often characterized by several well-known genera (e.g., Oryctolagus, Sylvilagus, Lepus, and Ochotona). This representation does not capture the extraordinary diversity of behavior and form found throughout the order. Model organisms are commonly used as exemplars for biological research, but there are a limited number of model clades or lineages that have been used to study evolutionary morphology in a more explicitly comparative way. We present this review paper to show that lagomorphs are a strong system in which to study macro- and micro-scale patterns of morphological change within a clade that offers underappreciated levels of diversity. To this end, we offer a summary of the status of relevant aspects of lagomorph biology.
Collapse
|
10
|
Rasys AM, Park S, Ball RE, Alcala AJ, Lauderdale JD, Menke DB. CRISPR-Cas9 Gene Editing in Lizards through Microinjection of Unfertilized Oocytes. Cell Rep 2020; 28:2288-2292.e3. [PMID: 31461646 DOI: 10.1016/j.celrep.2019.07.089] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/28/2019] [Accepted: 07/24/2019] [Indexed: 12/29/2022] Open
Abstract
CRISPR-Cas9-mediated gene editing has enabled the direct manipulation of gene function in many species. However, the reproductive biology of reptiles presents unique barriers for the use of this technology, and there are no reptiles with effective methods for targeted mutagenesis. Here, we demonstrate that the microinjection of immature oocytes within the ovaries of Anolis sagrei females enables the production of CRISPR-Cas9-induced mutations. This method is capable of producing F0 embryos and hatchlings with monoallelic or biallelic mutations. We demonstrate that these mutations can be transmitted through the germline to establish genetically modified strains of lizards. Direct tests of gene function can now be performed in Anolis lizards, an important model for studies of reptile evolution and development.
Collapse
Affiliation(s)
- Ashley M Rasys
- Department of Genetics, University of Georgia, Athens, GA 30602, USA; Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Sungdae Park
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Rebecca E Ball
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Aaron J Alcala
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - James D Lauderdale
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA; Neuroscience Division of the Biomedical Health Sciences Institute, University of Georgia, Athens, GA 30602, USA
| | - Douglas B Menke
- Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
11
|
Rasys AM, Divers SJ, Lauderdale JD, Menke DB. A systematic study of injectable anesthetic agents in the brown anole lizard ( Anolis sagrei ). Lab Anim 2019; 54:281-294. [PMID: 31345120 DOI: 10.1177/0023677219862841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Anolis lizards have served as important research models in fields ranging from evolution and ecology to physiology and biomechanics. However, anoles are also emerging as important models for studies of embryo development and tissue regeneration. The increased use of anoles in the laboratory has produced a need to establish effective methods of anesthesia, both for routine veterinary procedures and for research procedures. Therefore, we tested the efficacy of different anesthetic treatments in adult female Anolis sagrei. Alfaxalone, dexmedetomidine, hydromorphone, ketamine and tribromoethanol were administered subcutaneously (SC), either alone or combined at varying doses in a total of 64 female anoles. Drug induction time, duration, anesthesia level and adverse effects were assessed. Differences in anesthesia level were observed depending on injection site and drug combination. Alfaxalone/dexmedetomidine and tribromoethanol/dexmedetomidine were the most effective drug combinations for inducing a surgical plane of anesthesia in anoles. Brown anoles injected SC with alfaxalone (30 mg/kg) plus dexmedetomidine (0.1 mg/kg) or with tribromoethanol (400 mg/kg) plus dexmedetomidine (0.1 mg/kg) experienced mean durations of surgical anesthesia levels of 31.2 ± 5.3 and 87.5 ± 19.8 min with full recovery after another 10.9 ± 2.9 and 46.2 ± 41.8 min, respectively. Hydromorphone given with alfaxalone/dexmedetomidine resulted in deep anesthesia with respiratory depression, while ketamine/hydromorphone/dexmedetomidine produced only light to moderate sedation. We determined that alfaxalone/dexmedetomidine or tribromoethanol/dexmedetomidine combinations were sufficient to maintain a lizard under general anesthesia for coeliotomy. This study represents a significant step towards understanding the effects of anesthetic agents in anole lizards and will benefit both veterinary care and research on these animals.
Collapse
Affiliation(s)
- Ashley M Rasys
- Department of Genetics, University of Georgia, Athens, GA, USA.,Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Stephen J Divers
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | | | - Douglas B Menke
- Department of Genetics, University of Georgia, Athens, GA, USA
| |
Collapse
|
12
|
Griffing AH, Sanger TJ, Daza JD, Nielsen SV, Pinto BJ, Stanley EL, Gamble T. Embryonic development of a parthenogenetic vertebrate, the mourning gecko (
Lepidodactylus lugubris
). Dev Dyn 2019; 248:1070-1090. [DOI: 10.1002/dvdy.72] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Aaron H. Griffing
- Department of Biological SciencesMarquette University Milwaukee Wisconsin
| | - Thomas J. Sanger
- Department of BiologyLoyola University in Chicago Chicago Illinois
| | - Juan D. Daza
- Department of Biological SciencesSam Houston State University Huntsville Texas
| | - Stuart V. Nielsen
- Department of HerpetologyFlorida Museum of Natural History Gainesville Florida
| | - Brendan J. Pinto
- Department of Biological SciencesMarquette University Milwaukee Wisconsin
| | - Edward L. Stanley
- Department of HerpetologyFlorida Museum of Natural History Gainesville Florida
| | - Tony Gamble
- Department of Biological SciencesMarquette University Milwaukee Wisconsin
- Milwaukee Public Museum Milwaukee Wisconsin
- Bell Museum of Natural HistoryUniversity of Minnesota Saint Paul Minnesota
| |
Collapse
|