1
|
d'Agata L, Rassinoux P, Gounou C, Bouvet F, Bouragba D, Mamchaoui K, Bouter A. A Novel Assay Reveals the Early Setting-Up of Membrane Repair Machinery in Human Skeletal Muscle Cells. J Cell Biochem 2025; 126:e30662. [PMID: 39348239 PMCID: PMC11729639 DOI: 10.1002/jcb.30662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/11/2024] [Accepted: 09/15/2024] [Indexed: 10/02/2024]
Abstract
Defect in membrane repair contributes to the development of muscular dystrophies such as limb girdle muscular dystrophy (LGMD) type R2 or R12. Nevertheless, many other muscular dystrophies may also result from a defect in this process. Identifying these pathologies requires the development of specific methods to inflict sarcolemma damage on a large number of cells and rapidly analyze their response. We adapted a protocol hitherto used to study the behavior of cancer cells to mechanical constraint. This method is based on forcing the passage of cells through a thin needle, which induces shear stress. Due to size considerations, this method requires working with mononuclear muscle cells instead of myotubes or muscle fibers. Although functional sarcolemma repair was thought to be restricted to myotubes and muscle fibers, we show here that 24h-differentiated myoblasts express a complete machinery capable of addressing membrane damage. At this stage, muscle cells do not yet form myotubes, revealing that the membrane repair machinery is set up early throughout the differentiation process. When submitted to the shear-stress assay, these cells were observed to repair membrane damage in a Ca2+-dependent manner, as previously reported. We show that this technique is able to identify the absence of membrane resealing in muscle cells from patient suffering from LGMDR2. The proposed technique provides therefore a suitable method for identifying cellular dysregulations in membrane repair of dystrophic human muscle cells.
Collapse
Affiliation(s)
- Léna d'Agata
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248PessacFrance
| | | | - Céline Gounou
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248PessacFrance
| | - Flora Bouvet
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248PessacFrance
| | - Dounia Bouragba
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en MyologieParisFrance
| | - Kamel Mamchaoui
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en MyologieParisFrance
| | - Anthony Bouter
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248PessacFrance
| |
Collapse
|
2
|
Gounou C, Rouyer L, Siegfried G, Harté E, Bouvet F, d'Agata L, Darbo E, Lefeuvre M, Derieppe MA, Bouton L, Mélane M, Chapeau D, Martineau J, Prouzet-Mauleon V, Tan S, Souleyreau W, Saltel F, Argoul F, Khatib AM, Brisson AR, Iggo R, Bouter A. Inhibition of the membrane repair protein annexin-A2 prevents tumor invasion and metastasis. Cell Mol Life Sci 2023; 81:7. [PMID: 38092984 PMCID: PMC10719157 DOI: 10.1007/s00018-023-05049-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 12/17/2023]
Abstract
Cancer cells are exposed to major compressive and shearing forces during invasion and metastasis, leading to extensive plasma membrane damage. To survive this mechanical stress, they need to repair membrane injury efficiently. Targeting the membrane repair machinery is thus potentially a new way to prevent invasion and metastasis. We show here that annexin-A2 (ANXA2) is required for membrane repair in invasive breast and pancreatic cancer cells. Mechanistically, we show by fluorescence and electron microscopy that cells fail to reseal shear-stress damaged membrane when ANXA2 is silenced or the protein is inhibited with neutralizing antibody. Silencing of ANXA2 has no effect on proliferation in vitro, and may even accelerate migration in wound healing assays, but reduces tumor cell dissemination in both mice and zebrafish. We expect that inhibiting membrane repair will be particularly effective in aggressive, poor prognosis tumors because they rely on the membrane repair machinery to survive membrane damage during tumor invasion and metastasis. This could be achieved either with anti-ANXA2 antibodies, which have been shown to inhibit metastasis of breast and pancreatic cancer cells, or with small molecule drugs.
Collapse
Affiliation(s)
- C Gounou
- CNRS, Bordeaux INP, CBMN, UMR 5248, University of Bordeaux, Bât. B14, Allée Geoffroy Saint Hilaire, 33600, Pessac, France
| | - L Rouyer
- INSERM, BRIC, U 1312, University of Bordeaux, 33000, Bordeaux, France
| | - G Siegfried
- INSERM, BRIC, U 1312, University of Bordeaux, 33000, Bordeaux, France
- XenoFish, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615, Pessac, France
| | - E Harté
- CNRS, LOMA, UMR 5798, University of Bordeaux, 33400, Talence, France
| | - F Bouvet
- CNRS, Bordeaux INP, CBMN, UMR 5248, University of Bordeaux, Bât. B14, Allée Geoffroy Saint Hilaire, 33600, Pessac, France
| | - L d'Agata
- CNRS, Bordeaux INP, CBMN, UMR 5248, University of Bordeaux, Bât. B14, Allée Geoffroy Saint Hilaire, 33600, Pessac, France
| | - E Darbo
- INSERM, BRIC, U 1312, University of Bordeaux, 33000, Bordeaux, France
| | - M Lefeuvre
- CNRS, Bordeaux INP, CBMN, UMR 5248, University of Bordeaux, Bât. B14, Allée Geoffroy Saint Hilaire, 33600, Pessac, France
| | - M A Derieppe
- Animalerie Mutualisée, Service Commun des Animaleries, University of Bordeaux, 33000, Bordeaux, France
| | - L Bouton
- INSERM, BRIC, U 1312, University of Bordeaux, 33000, Bordeaux, France
| | - M Mélane
- CNRS, LOMA, UMR 5798, University of Bordeaux, 33400, Talence, France
| | - D Chapeau
- CNRS, Bordeaux INP, CBMN, UMR 5248, University of Bordeaux, Bât. B14, Allée Geoffroy Saint Hilaire, 33600, Pessac, France
| | - J Martineau
- Animalerie Mutualisée, Service Commun des Animaleries, University of Bordeaux, 33000, Bordeaux, France
| | - V Prouzet-Mauleon
- INSERM, BRIC, U 1312, University of Bordeaux, 33000, Bordeaux, France
- CRISPRedit, TBMcore, UAR CNRS 3427, Inserm US 005, University of Bordeaux, Bordeaux, France
| | - S Tan
- CNRS, Bordeaux INP, CBMN, UMR 5248, University of Bordeaux, Bât. B14, Allée Geoffroy Saint Hilaire, 33600, Pessac, France
| | - W Souleyreau
- INSERM, BRIC, U 1312, University of Bordeaux, 33000, Bordeaux, France
| | - F Saltel
- INSERM, BRIC, U 1312, University of Bordeaux, 33000, Bordeaux, France
| | - F Argoul
- CNRS, LOMA, UMR 5798, University of Bordeaux, 33400, Talence, France
| | - A M Khatib
- INSERM, BRIC, U 1312, University of Bordeaux, 33000, Bordeaux, France
- XenoFish, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615, Pessac, France
- Bergonié Institute, Bordeaux, France
| | - A R Brisson
- CNRS, Bordeaux INP, CBMN, UMR 5248, University of Bordeaux, Bât. B14, Allée Geoffroy Saint Hilaire, 33600, Pessac, France
| | - R Iggo
- INSERM, BRIC, U 1312, University of Bordeaux, 33000, Bordeaux, France
| | - A Bouter
- CNRS, Bordeaux INP, CBMN, UMR 5248, University of Bordeaux, Bât. B14, Allée Geoffroy Saint Hilaire, 33600, Pessac, France.
| |
Collapse
|
3
|
Vallecillo-Zúniga ML, Rathgeber M, Poulson D, Kartchner B, Luddington J, Gill H, Hayes S, Teynor M, Stowell CS, Arthur CM, Stowell SR, Van Ry PM. Evaluating Therapeutic Activity of Galectin-1 in Sarcolemma Repair of Skeletal Muscle. Methods Mol Biol 2022; 2442:663-683. [PMID: 35320552 DOI: 10.1007/978-1-0716-2055-7_36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Galectin-1 is a small (14.5 kDa) multifunctional protein with cell-cell and cell-ECM adhesion due to interactions with the carbohydrate recognition domain (CRD). In two types of muscular dystrophies, this lectin protein has shown therapeutic properties, including positive regulation of skeletal muscle differentiation and regeneration. Both Duchenne and limb-girdle muscular dystrophy 2B (LGMD2B) are subtypes of muscular dystrophies characterized by deficient membrane repair, muscle weakness, and eventual loss of ambulation. This chapter explains confocal techniques such as laser injury, calcium imaging, and galectin-1 localization to examine the effects of galectin-1 on membrane repair in injured LGMD2B models.
Collapse
Affiliation(s)
| | - Matthew Rathgeber
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Daniel Poulson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Braden Kartchner
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Jacob Luddington
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Hailie Gill
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Spencer Hayes
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Matthew Teynor
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Caleb S Stowell
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Connie M Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA
| | - Pam M Van Ry
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
- Department of Biochemistry, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
4
|
Defective membrane repair machinery impairs survival of invasive cancer cells. Sci Rep 2020; 10:21821. [PMID: 33311633 PMCID: PMC7733495 DOI: 10.1038/s41598-020-77902-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/17/2020] [Indexed: 11/08/2022] Open
Abstract
Cancer cells are able to reach distant tissues by migration and invasion processes. Enhanced ability to cope with physical stresses leading to cell membrane damages may offer to cancer cells high survival rate during metastasis. Consequently, down-regulation of the membrane repair machinery may lead to metastasis inhibition. We show that migration of MDA-MB-231 cells on collagen I fibrils induces disruptions of plasma membrane and pullout of membrane fragments in the wake of cells. These cells are able to reseal membrane damages thanks to annexins (Anx) that are highly expressed in invasive cancer cells. In vitro membrane repair assays reveal that MDA-MB-231 cells respond heterogeneously to membrane injury and some of them possess a very efficient repair machinery. Finally, we show that silencing of AnxA5 and AnxA6 leads to the death of migrating MDA-MB-231 cells due to major defect of the membrane repair machinery. Disturbance of the membrane repair process may therefore provide a new avenue for inhibiting cancer metastasis.
Collapse
|
5
|
Vallecillo-Zúniga ML, Rathgeber MF, Poulson PD, Hayes S, Luddington JS, Gill HN, Teynor M, Kartchner BC, Valdoz J, Stowell C, Markham AR, Arthur C, Stowell S, Van Ry PM. Treatment with galectin-1 improves myogenic potential and membrane repair in dysferlin-deficient models. PLoS One 2020; 15:e0238441. [PMID: 32881965 PMCID: PMC7470338 DOI: 10.1371/journal.pone.0238441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/17/2020] [Indexed: 11/18/2022] Open
Abstract
Limb-girdle muscular dystrophy type 2B (LGMD2B) is caused by mutations in the dysferlin gene, resulting in non-functional dysferlin, a key protein found in muscle membrane. Treatment options available for patients are chiefly palliative in nature and focus on maintaining ambulation. Our hypothesis is that galectin-1 (Gal-1), a soluble carbohydrate binding protein, increases membrane repair capacity and myogenic potential of dysferlin-deficient muscle cells and muscle fibers. To test this hypothesis, we used recombinant human galectin-1 (rHsGal-1) to treat dysferlin-deficient models. We show that rHsGal-1 treatments of 48 h-72 h promotes myogenic maturation as indicated through improvements in size, myotube alignment, myoblast migration, and membrane repair capacity in dysferlin-deficient myotubes and myofibers. Furthermore, increased membrane repair capacity of dysferlin-deficient myotubes, independent of increased myogenic maturation is apparent and co-localizes on the membrane of myotubes after a brief 10min treatment with labeled rHsGal-1. We show the carbohydrate recognition domain of Gal-1 is necessary for observed membrane repair. Improvements in membrane repair after only a 10 min rHsGal-1treatment suggest mechanical stabilization of the membrane due to interaction with glycosylated membrane bound, ECM or yet to be identified ligands through the CDR domain of Gal-1. rHsGal-1 shows calcium-independent membrane repair in dysferlin-deficient and wild-type myotubes and myofibers. Together our novel results reveal Gal-1 mediates disease pathologies through both changes in integral myogenic protein expression and mechanical membrane stabilization.
Collapse
Affiliation(s)
- Mary L. Vallecillo-Zúniga
- Department of Chemistry & Biochemistry, Brigham Young University, Provo, UT, United States of America
| | - Matthew F. Rathgeber
- Department of Chemistry & Biochemistry, Brigham Young University, Provo, UT, United States of America
| | - P. Daniel Poulson
- Department of Chemistry & Biochemistry, Brigham Young University, Provo, UT, United States of America
| | - Spencer Hayes
- Department of Chemistry & Biochemistry, Brigham Young University, Provo, UT, United States of America
| | - Jacob S. Luddington
- Department of Chemistry & Biochemistry, Brigham Young University, Provo, UT, United States of America
| | - Hailie N. Gill
- Department of Chemistry & Biochemistry, Brigham Young University, Provo, UT, United States of America
| | - Matthew Teynor
- Department of Chemistry & Biochemistry, Brigham Young University, Provo, UT, United States of America
| | - Braden C. Kartchner
- Department of Chemistry & Biochemistry, Brigham Young University, Provo, UT, United States of America
| | - Jonard Valdoz
- Department of Chemistry & Biochemistry, Brigham Young University, Provo, UT, United States of America
| | - Caleb Stowell
- Department of Chemistry & Biochemistry, Brigham Young University, Provo, UT, United States of America
| | - Ashley R. Markham
- Department of Chemistry & Biochemistry, Brigham Young University, Provo, UT, United States of America
| | - Connie Arthur
- Center for Apheresis, Emory Hospital, Laboratory and Blood Bank, Emory Orthopaedics and Spine Hospital, Center for Transfusion and Cellular Therapies, School of Medicine, Emory University, Atlanta, GA, United States of America
| | - Sean Stowell
- Center for Apheresis, Emory Hospital, Laboratory and Blood Bank, Emory Orthopaedics and Spine Hospital, Center for Transfusion and Cellular Therapies, School of Medicine, Emory University, Atlanta, GA, United States of America
| | - Pam M. Van Ry
- Department of Chemistry & Biochemistry, Brigham Young University, Provo, UT, United States of America
- * E-mail:
| |
Collapse
|
6
|
Croissant C, Gounou C, Bouvet F, Tan S, Bouter A. Annexin-A6 in Membrane Repair of Human Skeletal Muscle Cell: A Role in the Cap Subdomain. Cells 2020; 9:E1742. [PMID: 32708200 PMCID: PMC7409186 DOI: 10.3390/cells9071742] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/01/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022] Open
Abstract
Defects in membrane repair contribute to the development of some muscular dystrophies, highlighting the importance to decipher the membrane repair mechanisms in human skeletal muscle. In murine myofibers, the formation of a cap subdomain composed notably by annexins (Anx) is critical for membrane repair. We applied membrane damage by laser ablation to human skeletal muscle cells and assessed the behavior of annexin-A6 (AnxA6) tagged with GFP by correlative light and electron microscopy (CLEM). We show that AnxA6 was recruited to the site of membrane injury within a few seconds after membrane injury. In addition, we show that the deficiency in AnxA6 compromises human sarcolemma repair, demonstrating the crucial role played by AnxA6 in this process. An AnxA6-containing cap-subdomain was formed in damaged human myotubes in about one minute. Through transmission electron microscopy (TEM), we observed that extension of the sarcolemma occurred during membrane resealing, which participated in forming a dense lipid structure in order to plug the hole. By properties of membrane folding and curvature, AnxA6 helped in the formation of this tight structure. The compaction of intracellular membranes-which are used for membrane resealing and engulfed in extensions of the sarcolemma-may also facilitate elimination of the excess of lipid and protein material once cell membrane has been repaired. These data reinforce the role played by AnxA6 and the cap subdomain in membrane repair of skeletal muscle cells.
Collapse
Affiliation(s)
- Coralie Croissant
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux, IPB, F-33600 Pessac, France
| | - Céline Gounou
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux, IPB, F-33600 Pessac, France
| | - Flora Bouvet
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux, IPB, F-33600 Pessac, France
| | - Sisareuth Tan
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux, IPB, F-33600 Pessac, France
| | - Anthony Bouter
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux, IPB, F-33600 Pessac, France
| |
Collapse
|
7
|
Ducat A, Couderc B, Bouter A, Biquard L, Aouache R, Passet B, Doridot L, Cohen MB, Ribaux P, Apicella C, Gaillard I, Palfray S, Chen Y, Vargas A, Julé A, Frelin L, Cocquet J, San Martin CR, Jacques S, Busato F, Tost J, Méhats C, Laissue P, Vilotte JL, Miralles F, Vaiman D. Molecular Mechanisms of Trophoblast Dysfunction Mediated by Imbalance between STOX1 Isoforms. iScience 2020; 23:101086. [PMID: 32371375 PMCID: PMC7200942 DOI: 10.1016/j.isci.2020.101086] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/16/2020] [Accepted: 04/15/2020] [Indexed: 12/16/2022] Open
Abstract
STOX1 is a transcription factor involved in preeclampsia and Alzheimer disease. We show that the knock-down of the gene induces rather mild effect on gene expression in trophoblast cell lines (BeWo). We identified binding sites of STOX1 shared by the two major isoforms, STOX1A and STOX1B. Profiling gene expression of cells overexpressing either STOX1A or STOX1B, we identified genes downregulated by both isoforms, with a STOX1 binding site in their promoters. Among those, STOX1-induced Annexin A1 downregulation led to abolished membrane repair in BeWo cells. By contrast, overexpression of STOX1A or B has opposite effects on trophoblast fusion (acceleration and inhibition, respectively) accompanied by syncytin genes deregulation. Also, STOX1A overexpression led to abnormal regulation of oxidative and nitrosative stress. In sum, our work shows that STOX1 isoform imbalance is a cause of gene expression deregulation in the trophoblast, possibly leading to placental dysfunction and preeclampsia.
Collapse
Affiliation(s)
- Aurélien Ducat
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France
| | - Betty Couderc
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France
| | - Anthony Bouter
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux, IPB, 33600 Pessac, France
| | - Louise Biquard
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France
| | - Rajaa Aouache
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France
| | - Bruno Passet
- Université Paris-Saclay, INRAE, AgroParisTech, UMR1313-GABI, 78350, Jouy-en-Josas, France
| | - Ludivine Doridot
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France
| | - Marie-Benoîte Cohen
- Department of Gynecology Obstetrics, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Pascale Ribaux
- Department of Gynecology Obstetrics, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Clara Apicella
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France
| | - Irène Gaillard
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France
| | - Sophia Palfray
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France
| | - Yulian Chen
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France
| | - Alexandra Vargas
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France
| | - Amélie Julé
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France
| | - Léo Frelin
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux, IPB, 33600 Pessac, France
| | - Julie Cocquet
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France
| | - Camino Ruano San Martin
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France
| | - Sébastien Jacques
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France
| | - Florence Busato
- Laboratory for Epigenetics and Environment, Institut de Biologie François Jacob, Commissariat àl'Energie Atomique, Evry 91057, France
| | - Jorg Tost
- Laboratory for Epigenetics and Environment, Institut de Biologie François Jacob, Commissariat àl'Energie Atomique, Evry 91057, France
| | - Céline Méhats
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France
| | - Paul Laissue
- Biopas Laboratoires, BIOPAS GROUP, Bogotá, Colombia
| | - Jean-Luc Vilotte
- Université Paris-Saclay, INRAE, AgroParisTech, UMR1313-GABI, 78350, Jouy-en-Josas, France
| | - Francisco Miralles
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France
| | - Daniel Vaiman
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France.
| |
Collapse
|
8
|
Brito C, Cabanes D, Sarmento Mesquita F, Sousa S. Mechanisms protecting host cells against bacterial pore-forming toxins. Cell Mol Life Sci 2019; 76:1319-1339. [PMID: 30591958 PMCID: PMC6420883 DOI: 10.1007/s00018-018-2992-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 12/19/2022]
Abstract
Pore-forming toxins (PFTs) are key virulence determinants produced and secreted by a variety of human bacterial pathogens. They disrupt the plasma membrane (PM) by generating stable protein pores, which allow uncontrolled exchanges between the extracellular and intracellular milieus, dramatically disturbing cellular homeostasis. In recent years, many advances were made regarding the characterization of conserved repair mechanisms that allow eukaryotic cells to recover from mechanical disruption of the PM membrane. However, the specificities of the cell recovery pathways that protect host cells against PFT-induced damage remain remarkably elusive. During bacterial infections, the coordinated action of such cell recovery processes defines the outcome of infected cells and is, thus, critical for our understanding of bacterial pathogenesis. Here, we review the cellular pathways reported to be involved in the response to bacterial PFTs and discuss their impact in single-cell recovery and infection.
Collapse
Affiliation(s)
- Cláudia Brito
- i3S-Instituto de Investigação e Inovação em Saúde, IBMC, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Didier Cabanes
- i3S-Instituto de Investigação e Inovação em Saúde, IBMC, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Francisco Sarmento Mesquita
- i3S-Instituto de Investigação e Inovação em Saúde, IBMC, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
- Global Health Institute, School of Life Science, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Sandra Sousa
- i3S-Instituto de Investigação e Inovação em Saúde, IBMC, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
| |
Collapse
|
9
|
Croissant C, Bouvet F, Tan S, Bouter A. Imaging Membrane Repair in Single Cells Using Correlative Light and Electron Microscopy. ACTA ACUST UNITED AC 2018; 81:e55. [PMID: 30085404 DOI: 10.1002/cpcb.55] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Many cells possess the ability to repair plasma membrane disruption in physiological conditions. Growing evidence indicates a correlation between membrane repair and many human diseases. For example, a negative correlation is observed in muscle where failure to reseal sarcolemma may contribute to the development of muscular dystrophies. Instead, a positive correlation is observed in cancer cells where membrane repair may be exacerbated during metastasis. Here we describe a protocol that combines laser technology for membrane damage, immunostaining with gold nanoparticles and imaging by fluorescence microscopy and transmission electron microscopy (TEM), which allows the characterization of the molecular machinery involved in membrane repair. Fluorescence microscopy enables to determine the subcellular localization of candidate proteins in damaged cells while TEM offers high-resolution ultrastructural analysis of the µm²-disruption site, which enables to decipher the membrane repair mechanism. Here we focus on the study of human skeletal muscle cells, for obvious clinical interest, but this protocol is also suitable for other cell types. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Coralie Croissant
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux, Pessac, France
| | - Flora Bouvet
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux, Pessac, France
| | - Sisareuth Tan
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux, Pessac, France
| | - Anthony Bouter
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux, Pessac, France
| |
Collapse
|
10
|
Gene Cloning, Expression, and Antifungal Activities of Permatin from Naked Oat (Avena nuda). Probiotics Antimicrob Proteins 2018; 11:299-309. [PMID: 29717420 DOI: 10.1007/s12602-018-9422-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Thaumatin-like proteins (TLPs) are the products of a large, highly complex gene family involved in host defense. TLPs also belong to the pathogenesis-related family 5 (PR-5) of plant defense proteins. Most TLPs exhibit potential antifungal activities, and their accumulation in the plant is related to many physiological processes. In this study, a gene encoding TLP named permatin with an open reading frame of 678 bp encoding a protein of 225 amino acids with a calculated molecular mass of 23.5 kDa was cloned from naked oat leaves. Phylogenetic analysis revealed that permatin shares high homology with a number of other TLPs among diverse taxa. Model of structure by homology modeling showed that permatin consists of an acidic cleft region consistent with most TLPs. Recombinant NusA-permatin was overexpressed in Escherichia coli strain BL21 and purified by Heparin column combined with Sephacryl S-200 column. The protein exhibited antifungal activity to Fusarium oxysporum (half maximal inhibitory concentration, IC50 = 21.42 μM). Morphological observation showed that NusA-permatin can induce mycelium deformation of F. oxysporum, the cell membrane is blurred, and the diaphragm is not obvious. NusA-permatin also causes membrane permeabilization and reactive oxygen species accumulation in the mycelium of F. oxysporum. Permatin may play an important role in the disease resistance responses of plants against pathogen attacks through its antifungal activity.
Collapse
|