1
|
Haynes KA, Andrews LB, Beisel CL, Chappell J, Cuba Samaniego CE, Dueber JE, Dunlop MJ, Franco E, Lucks JB, Noireaux V, Savage DF, Silver PA, Smanski M, Young E. Ten Years of the Synthetic Biology Summer Course at Cold Spring Harbor Laboratory. ACS Synth Biol 2024; 13:2635-2642. [PMID: 39300908 PMCID: PMC11421210 DOI: 10.1021/acssynbio.4c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The Cold Spring Harbor Laboratory (CSHL) Summer Course on Synthetic Biology, established in 2013, has emerged as a premier platform for immersive education and research in this dynamic field. Rooted in CSHL's rich legacy of biological discovery, the course offers a comprehensive exploration of synthetic biology's fundamentals and applications. Led by a consortium of faculty from diverse institutions, the course structure seamlessly integrates practical laboratory sessions, exploratory research rotations, and enriching seminars by leaders in the field. Over the years, the curriculum has evolved to cover essential topics such as cell-free transcription-translation, DNA construction, computational modeling of gene circuits, engineered gene regulation, and CRISPR technologies. In this review, we describe the history, development, and structure of the course, and discuss how elements of the course might inform the development of other short courses in synthetic biology. We also demonstrate the course's impact beyond the lab with a summary of alumni contributions to research, education, and entrepreneurship. Through these efforts, the CSHL Summer Course on Synthetic Biology remains at the forefront of shaping the next generation of synthetic biologists.
Collapse
Affiliation(s)
- Karmella A Haynes
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, Georgia 30345, United States
| | - Lauren B Andrews
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Chase L Beisel
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
- Medical Faculty, University of Würzburg, 97080 Würzburg, Germany
| | - James Chappell
- Biosciences Department, Rice University, Houston, Texas 77005, United States
| | - Christian E Cuba Samaniego
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - John E Dueber
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Mary J Dunlop
- Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Elisa Franco
- Mechanical and Aerospace Engineering, Bioengineering, University of California, Los Angeles, California 90095, United States
| | - Julius B Lucks
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - David F Savage
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California Berkeley, Berkeley, California 94720, United States
| | - Pamela A Silver
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Michael Smanski
- Department of Biochemistry, Molecular Biology, and Biophysics and Biotechnology Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Eric Young
- Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
| |
Collapse
|
2
|
Yan P, Zeng Y, Shen W, Tuo D, Li X, Zhou P. Nimble Cloning: A Simple, Versatile, and Efficient System for Standardized Molecular Cloning. Front Bioeng Biotechnol 2020; 7:460. [PMID: 32010678 PMCID: PMC6974442 DOI: 10.3389/fbioe.2019.00460] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/19/2019] [Indexed: 12/22/2022] Open
Abstract
Molecular cloning is one of the most fundamental technologies in molecular biology, and has been critical for driving biotechnological advances. In this study, we have developed a novel method for standardized molecular cloning. The cloning technique known as "Nimble Cloning" uses the restriction enzyme, SfiI, in combination with the T5 exonuclease, to linearize the vector and generate 3'-overhangs simultaneously. Both PCR products and plasmids can be used for the cloning reaction in the Nimble Cloning system. The cloning system is highly efficient, suitable for gene expression in both prokaryotic and eukaryotic expression systems, and enables the reuse of DNA fragments or plasmid entry clones. Nimble Cloning is applicable for the cloning of single or multiple fragments, as well as multi-site cloning. Due also to its simplicity and versatility, the cloning method has great potential for the modular assembly of DNA constructs.
Collapse
Affiliation(s)
- Pu Yan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yanjing Zeng
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wentao Shen
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Decai Tuo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xiaoying Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Peng Zhou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
3
|
Stach CS, McCann MG, O’Brien CM, Le TS, Somia N, Chen X, Lee K, Fu HY, Daoutidis P, Zhao L, Hu WS, Smanski M. Model-Driven Engineering of N-Linked Glycosylation in Chinese Hamster Ovary Cells. ACS Synth Biol 2019; 8:2524-2535. [PMID: 31596566 PMCID: PMC7034315 DOI: 10.1021/acssynbio.9b00215] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chinese hamster ovary (CHO) cells are used for industrial production of protein-based therapeutics (i.e., "biologics"). Here we describe a method for combining systems-level kinetic models with a synthetic biology platform for multigene overexpression to rationally perturb N-linked glycosylation. Specifically, we sought to increase galactose incorporation on a secreted Immunoglobulin G (IgG) protein. We rationally design, build, and test a total of 23 transgenic cell pools that express single or three-gene glycoengineering cassettes comprising a total of 100 kilobases of engineered DNA sequence. Through iterative engineering and model refinement, we rationally increase the fraction of bigalactosylated glycans five-fold from 11.9% to 61.9% and simultaneously decrease the glycan heterogeneity on the secreted IgG. Our approach allows for rapid hypothesis testing and identification of synergistic behavior from genetic perturbations by bridging systems and synthetic biology.
Collapse
Affiliation(s)
- Christopher S. Stach
- Department of Biochemistry, Molecular Biology & Biophysics and Biotechnology Institute
| | | | | | - Tung S. Le
- Department of Chemical Engineering and Materials Science
| | - Nikunj Somia
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Xinning Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Kyoungho Lee
- Department of Chemical Engineering and Materials Science
| | - Hsu-Yuan Fu
- Department of Chemical Engineering and Materials Science
| | | | - Liang Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science
| | - Michael Smanski
- Department of Biochemistry, Molecular Biology & Biophysics and Biotechnology Institute
| |
Collapse
|
4
|
Hsu SY, Perusse D, Hougard T, Smanski MJ. Semisynthesis of the Neuroprotective Metabolite, Serofendic Acid. ACS Synth Biol 2019; 8:2397-2403. [PMID: 31487457 DOI: 10.1021/acssynbio.9b00261] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Serofendic acid is a natural neuroprotective molecule found in fetal calf serum. It is able to protect neurons against mechanisms of cell death associated with neurodegenerative disease. Because only trace quantities are present in fetal calf serum and complete chemical syntheses are long and inefficient, its development as a therapeutic agent has been slow. We engineered a heterologous metabolic pathway in Streptomyces to produce a late-stage synthetic intermediate, ent-atiserenoic acid, at high titers. We completed the total synthesis of serofendic acid from this intermediate in four steps.
Collapse
Affiliation(s)
- Szu-Yi Hsu
- Department of Biochemistry, Molecular Biology, and Biophysics and Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| | - Dimitri Perusse
- Department of Biochemistry, Molecular Biology, and Biophysics and Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| | - Thomas Hougard
- Department of Biochemistry, Molecular Biology, and Biophysics and Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| | - Michael J. Smanski
- Department of Biochemistry, Molecular Biology, and Biophysics and Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| |
Collapse
|
5
|
Gene-edited vero cells as rotavirus vaccine substrates. Vaccine X 2019; 3:100045. [PMID: 31660537 PMCID: PMC6806661 DOI: 10.1016/j.jvacx.2019.100045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/30/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022] Open
Abstract
Background Rotavirus (RV) is a leading cause of severe gastroenteritis globally and can cause substantial morbidity associated with gastroenteritis in children <5 years of age. Orally administered live-attenuated RV vaccines offer protection against disease but vaccination efforts have been hampered by high manufacturing costs and the need to maintain a cold chain. Methods A subset of Vero cell host genes was identified by siRNA that when knocked down increased RV replication and these anti-viral host genes were individually deleted using CRISPR-Cas9. Results Fully-sequenced gene knockout Vero cell substrates were assessed for increased RV replication and RV vaccine antigen expression compared to wild type Vero cells. The results showed that RV replication and antigen production were logs higher in Vero cells having an EMX2 gene deletion compared to other Vero cell substrates tested. Conclusions We used siRNAs to screen for host genes that negatively affected RV replication, then CRISPR-Cas9 gene editing to delete select genes. The gene editing led to the development of enhanced RV vaccine substrates supporting a potential path forward for improving RV vaccine production.
Collapse
|