1
|
Wang G, Ren J, Zeng X, Chen X, Liang A, Wang X, Xu J. Serine and Arginine-Rich Splicing Factor 3 Promotes the Activation of Quiescent Mouse Neural Stem Cells. Stem Cells Dev 2024; 33:79-88. [PMID: 38115601 DOI: 10.1089/scd.2023.0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
The quiescence and activation of adult stem cells are regulated by many kinds of molecular mechanisms, and RNA alternative splicing participates in regulating many cellular processes. However, the relationship between stem cell quiescence and activation regulation and gene alternative splicing has yet to be studied. In this study, we aimed to elucidate the regulation of stem cell quiescence and activation by RNA alternative splicing. The upregulated genes in activated mouse neural stem cells (NSCs), muscle stem cells, and hematopoietic stem cells were collected for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis. The genes from three tissue stem cells underwent Venn analysis. The mouse NSCs were used for quiescence and reactivation induction. The immunostaining of cell-specific markers was performed to identify cell properties. The reverse transcription-polymerase chain reaction and western blotting were used to detect the gene expression and protein expression, respectively. We found that the upregulated genes in activated stem cells from three tissues were all enriched in RNA splicing-related biological processes; the upregulated RNA splicing-related genes in activated stem cells displayed tissue differences; mouse NSCs were successfully induced into quiescence and reactivation in vitro without losing differentiation potential; serine and arginine-rich splicing factor 3 (Srsf3) was highly expressed in the activated mouse NSCs, and the overexpression of SRSF3 protein promoted the activation of quiescent mouse NSCs and increased the neural cell production. Our data indicate that the alternative splicing change may underline the transition of quiescence and activation of stem cells. The manipulation of the splicing factor may benefit tissue repair by promoting the activation of quiescent stem cells.
Collapse
Affiliation(s)
- Guangming Wang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Postdoctoral Station of Clinical Medicine, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Ren
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xinhao Zeng
- Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Xu Chen
- Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Aibin Liang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xianli Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Xu
- East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Stephen TKL, Cofresi LA, Quiroz E, Owusu-Ansah K, Ibrahim Y, Qualls E, Marshall J, Li W, Shetti A, Bonds JA, Minshall RD, Cologna SM, Lazarov O. Caveolin-1 Autonomously Regulates Hippocampal Neurogenesis Via Mitochondrial Dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.23.558792. [PMID: 37790360 PMCID: PMC10542167 DOI: 10.1101/2023.09.23.558792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The mechanisms underlying adult hippocampal neurogenesis (AHN) are not fully understood. AHN plays instrumental roles in learning and memory. Understanding the signals that regulate AHN has implications for brain function and therapy. Here we show that Caveolin-1 (Cav-1), a protein that is highly enriched in endothelial cells and the principal component of caveolae, autonomously regulates AHN. Conditional deletion of Cav-1 in adult neural progenitor cells (nestin +) led to increased neurogenesis and enhanced performance of mice in contextual discrimination. Proteomic analysis revealed that Cav-1 plays a role in mitochondrial pathways in neural progenitor cells. Importantly, Cav-1 was localized to the mitochondria in neural progenitor cells and modulated mitochondrial fission-fusion, a critical process in neurogenesis. These results suggest that Cav-1 is a novel regulator of AHN and underscore the impact of AHN on cognition.
Collapse
Affiliation(s)
- Terilyn K. L. Stephen
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Luis Aponte Cofresi
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Elvis Quiroz
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Kofi Owusu-Ansah
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Yomna Ibrahim
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Ellis Qualls
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Jeffery Marshall
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Wenping Li
- Department of Chemistry, University of Illinois at Chicago, IL, USA
| | - Aashutosh Shetti
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Jacqueline A Bonds
- Departmet of Anesthesiology, University of California San Diego, CA, USA
| | - Richard D. Minshall
- Deparment of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, IL,USA
- Department of Anesthesiology, University of Illinois at Chicago, IL USA
| | | | - Orly Lazarov
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
- Lead Contact
| |
Collapse
|
3
|
Yan W, Hao F, Zhe X, Wang Y, Liu D. Neural, adipocyte and hepatic differentiation potential of primary and secondary hair follicle stem cells isolated from Arbas Cashmere goats. BMC Vet Res 2022; 18:313. [PMID: 35971123 PMCID: PMC9377108 DOI: 10.1186/s12917-022-03420-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022] Open
Abstract
Background Arbas Cashmere goats are excellent domestic breeds with high yields of wool and cashmere. Their wool and cashmere can bring huge benefits to the livestock industry. Our studies intend to more fully understand the biological characteristics of hair follicle stem cells (HFSCs) in order to further explore the mechanisms of wool and cashmere regular regeneration. And they have been increasingly considered as promising multipotent cells in regenerative medicine because of their capacity to self-renew and differentiate. However, many aspects of the specific growth characteristics and differentiation ability of HFSCs remain unknown. This study aimed to further explore the growth characteristics and pluripotency of primary hair follicle stem cells (PHFSCs) and secondary hair follicle stem cells (SHFCs). Results We obtained PHFSCs and SHFSCs from Arbas Cashmere goats using combined isolation and purification methods. The proliferation and vitality of the two types of HFSCs, as well as the growth patterns, were examined. HFSC-specific markers and genes related to pluripotency, were subsequently identified. The PHFSCs and SHFSCs of Arbas Cashmere goat have a typical cobblestone morphology. Moreover, the PHFSCs and SHFSCs express HFSC surface markers, including CD34, K14, K15, K19 and LGR5. We also identified pluripotency-associated gene expression, including SOX2, OCT4 and SOX9, in PHFSCs and SHFSCs. Finally, PHFSCs and SHFSCs displayed multipotent abilities. PHFSCs and SHFSCs can be directed to differentiate into adipocyte-like, neural-like, and hepatocyte-like cells. Conclusions In conclusion, this study confirmed that the biological characteristics and differentiation potential of PHFSCs and SHFSCs from Arbas Cashmere goats. These findings broaden and refine our knowledge of types and characteristics of adult stem cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03420-3.
Collapse
Affiliation(s)
- Wei Yan
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010021, China
| | - Fei Hao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010021, China
| | - Xiaoshu Zhe
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010021, China
| | - Yingmin Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010021, China
| | - Dongjun Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010021, China.
| |
Collapse
|
4
|
Sunkara RR, Mehta D, Sarate RM, Waghmare SK. BMP-AKT-GSK3β signalling restores hair follicle stem cells decrease associated with loss of Sfrp1. Stem Cells 2022; 40:802-817. [PMID: 35689817 DOI: 10.1093/stmcls/sxac041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 04/05/2022] [Indexed: 11/15/2022]
Abstract
Wnt signaling plays a pivotal role in regulating activation, proliferation, stem cell renewal and differentiation of hair follicle stem cells (HFSCs). Secreted frizzled related protein-1 (Sfrp1), a Wnt antagonist is up regulated in the HFSCs; however, its role in the HFSCs regulation is still obscure. Here, we show that Sfrp1 loss showed a depletion of HFSCs, enhanced HFSC proliferation and faster hair follicle cycle at PD21 to PD28, HFSC markers such as Lgr5 and Axin2 were decreased in both the Sfrp1 +/- and Sfrp1 -/- HFSCs. In addition, the second hair follicle cycle was also faster as compared to WT. Importantly, Sfrp1 -/- showed a restoration of HFSC by 2 nd telogen (PD49), while Sfrp1+/- did not show restoration with still having a decreased HFSC. Infact, restoration of HFSCs was due to a pronounced down-regulation of β-CATENIN activity mediated through a cross-talk of BMP-AKT-GSK3β signalling in Sfrp1-/- as compared to Sfrp1+/-, where down regulation was less pronounced. In cultured keratinocytes, Sfrp1 loss resulted in enhanced proliferation and clonogenicity, which were reversed by treating with either BMPR1A or GSK3β inhibitor thereby confirming BMP-AKT-GSK3β signaling involved in β-CATENIN regulation in both the Sfrp1 +/- and Sfrp1 -/- mice. Our study reveals a novel function of Sfrp1 by unravelling an in vivo molecular mechanism that regulate the HFSCs pool mediated through a hitherto unknown cross-talk of BMP-AKT-GSK3β signalling that maintain stem cell pool balance, which in turn maintain skin tissue homeostasis.
Collapse
Affiliation(s)
- Raghava R Sunkara
- Stem Cell Biology Group, Waghmare Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Darshan Mehta
- Stem Cell Biology Group, Waghmare Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Rahul M Sarate
- Stem Cell Biology Group, Waghmare Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Sanjeev K Waghmare
- Stem Cell Biology Group, Waghmare Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| |
Collapse
|
5
|
Salvi JS, Kang J, Kim S, Colville AJ, de Morrée A, Billeskov TB, Larsen MC, Kanugovi A, van Velthoven CTJ, Cimprich KA, Rando TA. ATR activity controls stem cell quiescence via the cyclin F-SCF complex. Proc Natl Acad Sci U S A 2022; 119:e2115638119. [PMID: 35476521 PMCID: PMC9170012 DOI: 10.1073/pnas.2115638119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 03/11/2022] [Indexed: 12/20/2022] Open
Abstract
A key property of adult stem cells is their ability to persist in a quiescent state for prolonged periods of time. The quiescent state is thought to contribute to stem cell resilience by limiting accumulation of DNA replication–associated mutations. Moreover, cellular stress response factors are thought to play a role in maintaining quiescence and stem cell integrity. We utilized muscle stem cells (MuSCs) as a model of quiescent stem cells and find that the replication stress response protein, ATR (Ataxia Telangiectasia and Rad3-Related), is abundant and active in quiescent but not activated MuSCs. Concurrently, MuSCs display punctate RPA (replication protein A) and R-loop foci, both key triggers for ATR activation. To discern the role of ATR in MuSCs, we generated MuSC-specific ATR conditional knockout (ATRcKO) mice. Surprisingly, ATR ablation results in increased MuSC quiescence exit. Phosphoproteomic analysis of ATRcKO MuSCs reveals enrichment of phosphorylated cyclin F, a key component of the Skp1–Cul1–F-box protein (SCF) ubiquitin ligase complex and regulator of key cell-cycle transition factors, such as the E2F family of transcription factors. Knocking down cyclin F or inhibiting the SCF complex results in E2F1 accumulation and in MuSCs exiting quiescence, similar to ATR-deficient MuSCs. The loss of ATR could be counteracted by inhibiting casein kinase 2 (CK2), the kinase responsible for phosphorylating cyclin F. We propose a model in which MuSCs express cell-cycle progression factors but ATR, in coordination with the cyclin F–SCF complex, represses premature stem cell quiescence exit via ubiquitin–proteasome degradation of these factors.
Collapse
Affiliation(s)
- Jayesh S. Salvi
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Jengmin Kang
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Soochi Kim
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Alex J. Colville
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Antoine de Morrée
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Tine Borum Billeskov
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Mikkel Christian Larsen
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Abhijnya Kanugovi
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Cindy T. J. van Velthoven
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Karlene A. Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305–5441
| | - Thomas A. Rando
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
- Neurology Service, VA Palo Alto Health Care System, Palo Alto, CA 94304
| |
Collapse
|
6
|
Moniz I, Ramalho-Santos J, Branco AF. Differential Oxygen Exposure Modulates Mesenchymal Stem Cell Metabolism and Proliferation through mTOR Signaling. Int J Mol Sci 2022; 23:ijms23073749. [PMID: 35409106 PMCID: PMC8998189 DOI: 10.3390/ijms23073749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cells reside under precise hypoxic conditions that are paramount in determining cell fate and behavior (metabolism, proliferation, differentiation, etc.). In this work, we show that different oxygen tensions promote a distinct proliferative response and affect the biosynthetic demand and global metabolic profile of umbilical cord-mesenchymal stem cells (UC-MSCs). Using both gas-based strategies and CoCl2 as a substitute for the costly hypoxic chambers, we found that specific oxygen tensions influence the fate of UC-MSCs differently. While 5% O2 potentiates proliferation, stimulates biosynthetic pathways, and promotes a global hypermetabolic profile, exposure to <1% O2 contributes to a quiescent-like cell state that relies heavily on anaerobic glycolysis. We show that using CoCl2 as a hypoxia substitute of moderate hypoxia has distinct metabolic effects, when compared with gas-based strategies. The present study also highlights that, while severe hypoxia regulates global translation via mTORC1 modulation, its effects on survival-related mechanisms are mainly modulated through mTORC2. Therefore, the experimental conditions used in this study establish a robust and reliable hypoxia model for UC-MSCs, providing relevant insights into how stem cells are influenced by their physiological environment, and how different strategies of modulating hypoxia may influence experimental outcomes.
Collapse
Affiliation(s)
- Inês Moniz
- CNC—Centre for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Azinhaga de Santa Comba, Polo 3, 3000-548 Coimbra, Portugal;
| | - João Ramalho-Santos
- CNC—Centre for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Azinhaga de Santa Comba, Polo 3, 3000-548 Coimbra, Portugal;
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- Correspondence: (J.R.-S.); (A.F.B.)
| | - Ana F. Branco
- CNC—Centre for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Azinhaga de Santa Comba, Polo 3, 3000-548 Coimbra, Portugal;
- Correspondence: (J.R.-S.); (A.F.B.)
| |
Collapse
|
7
|
CPEB1 directs muscle stem cell activation by reprogramming the translational landscape. Nat Commun 2022; 13:947. [PMID: 35177647 PMCID: PMC8854658 DOI: 10.1038/s41467-022-28612-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/14/2022] [Indexed: 11/08/2022] Open
Abstract
Skeletal muscle stem cells, also called Satellite Cells (SCs), are actively maintained in quiescence but can activate quickly upon extrinsic stimuli. However, the mechanisms of how quiescent SCs (QSCs) activate swiftly remain elusive. Here, using a whole mouse perfusion fixation approach to obtain bona fide QSCs, we identify massive proteomic changes during the quiescence-to-activation transition in pathways such as chromatin maintenance, metabolism, transcription, and translation. Discordant correlation of transcriptomic and proteomic changes reveals potential translational regulation upon SC activation. Importantly, we show Cytoplasmic Polyadenylation Element Binding protein 1 (CPEB1), post-transcriptionally affects protein translation during SC activation by binding to the 3' UTRs of different transcripts. We demonstrate phosphorylation-dependent CPEB1 promoted Myod1 protein synthesis by binding to the cytoplasmic polyadenylation elements (CPEs) within its 3' UTRs to regulate SC activation and muscle regeneration. Our study characterizes CPEB1 as a key regulator to reprogram the translational landscape directing SC activation and subsequent proliferation.
Collapse
|
8
|
OUP accepted manuscript. Brief Funct Genomics 2022; 21:159-176. [DOI: 10.1093/bfgp/elac002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 11/14/2022] Open
|
9
|
Bonitto K, Sarathy K, Atai K, Mitra M, Coller HA. Is There a Histone Code for Cellular Quiescence? Front Cell Dev Biol 2021; 9:739780. [PMID: 34778253 PMCID: PMC8586460 DOI: 10.3389/fcell.2021.739780] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/17/2021] [Indexed: 12/14/2022] Open
Abstract
Many of the cells in our bodies are quiescent, that is, temporarily not dividing. Under certain physiological conditions such as during tissue repair and maintenance, quiescent cells receive the appropriate stimulus and are induced to enter the cell cycle. The ability of cells to successfully transition into and out of a quiescent state is crucial for many biological processes including wound healing, stem cell maintenance, and immunological responses. Across species and tissues, transcriptional, epigenetic, and chromosomal changes associated with the transition between proliferation and quiescence have been analyzed, and some consistent changes associated with quiescence have been identified. Histone modifications have been shown to play a role in chromatin packing and accessibility, nucleosome mobility, gene expression, and chromosome arrangement. In this review, we critically evaluate the role of different histone marks in these processes during quiescence entry and exit. We consider different model systems for quiescence, each of the most frequently monitored candidate histone marks, and the role of their writers, erasers and readers. We highlight data that support these marks contributing to the changes observed with quiescence. We specifically ask whether there is a quiescence histone “code,” a mechanism whereby the language encoded by specific combinations of histone marks is read and relayed downstream to modulate cell state and function. We conclude by highlighting emerging technologies that can be applied to gain greater insight into the role of a histone code for quiescence.
Collapse
Affiliation(s)
- Kenya Bonitto
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kirthana Sarathy
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kaiser Atai
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular Biology Interdepartmental Doctoral Program, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Mithun Mitra
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Hilary A Coller
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
10
|
Corneal Epithelial Stem Cells-Physiology, Pathophysiology and Therapeutic Options. Cells 2021; 10:cells10092302. [PMID: 34571952 PMCID: PMC8465583 DOI: 10.3390/cells10092302] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022] Open
Abstract
In the human cornea, regeneration of the epithelium is regulated by the stem cell reservoir of the limbus, which is the marginal region of the cornea representing the anatomical and functional border between the corneal and conjunctival epithelium. In support of this concept, extensive limbal damage, e.g., by chemical or thermal injury, inflammation, or surgery, may induce limbal stem cell deficiency (LSCD) leading to vascularization and opacification of the cornea and eventually vision loss. These acquired forms of limbal stem cell deficiency may occur uni- or bilaterally, which is important for the choice of treatment. Moreover, a variety of inherited diseases, such as congenital aniridia or dyskeratosis congenita, are characterized by LSCD typically occurring bilaterally. Several techniques of autologous and allogenic stem cell transplantation have been established. The limbus can be restored by transplantation of whole limbal grafts, small limbal biopsies or by ex vivo-expanded limbal cells. In this review, the physiology of the corneal epithelium, the pathophysiology of LSCD, and the therapeutic options will be presented.
Collapse
|
11
|
Teti G, Chiarini F, Mazzotti E, Ruggeri A, Carano F, Falconi M. Cellular senescence in vascular wall mesenchymal stromal cells, a possible contribution to the development of aortic aneurysm. Mech Ageing Dev 2021; 197:111515. [PMID: 34062172 DOI: 10.1016/j.mad.2021.111515] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/10/2021] [Accepted: 05/25/2021] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a hallmark of ageing and it plays a key role in the development of age-related diseases. Abdominal aortic aneurysm (AAA) is an age related degenerative vascular disorder, characterized by a progressive dilatation of the vascular wall and high risk of rupture over time. Nowadays, no pharmacological therapies are available and the understanding of the molecular mechanisms that lead to AAA onset and development are poorly defined. In this study we investigated the cellular features of senescence in vascular mesenchymal stromal cells, isolated from pathological (AAA - MSCs) and healthy (h - MSCs) segments of human abdominal aorta and their implication in impairing the vascular repair ability of MSCs. Cell proliferation, ROS production, cell surface area, the expression of cyclin dependent kinase inhibitors p21CIP1 and p16INK4a, the activation of the DNA damage response and a dysregulated autophagy showed a senescent state in AAA - MSCs compared to h-MSCs. Moreover, a reduced ability to differentiate toward endothelial cells was observed in AAA - MSCs. All these data suggest that the accumulation of senescent vascular MSCs over time impairs their remodeling ability during ageing. This condition could support the onset and development of AAA.
Collapse
Affiliation(s)
- Gabriella Teti
- Department of Biomedical and Neuromotor Sciences, University di Bologna, Bologna, 40126, Italy.
| | - Francesca Chiarini
- CNR-National Research Council of Italy, Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, 40136, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy
| | - Eleonora Mazzotti
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, 64100, Italy
| | - Alessandra Ruggeri
- Department of Biomedical and Neuromotor Sciences, University di Bologna, Bologna, 40126, Italy
| | - Francesco Carano
- Department of Biomedical and Neuromotor Sciences, University di Bologna, Bologna, 40126, Italy
| | - Mirella Falconi
- Department of Biomedical and Neuromotor Sciences, University di Bologna, Bologna, 40126, Italy
| |
Collapse
|
12
|
Chmurska A, Matczak K, Marczak A. Two Faces of Autophagy in the Struggle against Cancer. Int J Mol Sci 2021; 22:2981. [PMID: 33804163 PMCID: PMC8000091 DOI: 10.3390/ijms22062981] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy can play a double role in cancerogenesis: it can either inhibit further development of the disease or protect cells, causing stimulation of tumour growth. This phenomenon is called "autophagy paradox", and is characterised by the features that the autophagy process provides the necessary substrates for biosynthesis to meet the cell's energy needs, and that the over-programmed activity of this process can lead to cell death through apoptosis. The fight against cancer is a difficult process due to high levels of resistance to chemotherapy and radiotherapy. More and more research is indicating that autophagy may play a very important role in the development of resistance by protecting cancer cells, which is why autophagy in cancer therapy can act as a "double-edged sword". This paper attempts to analyse the influence of autophagy and cancer stem cells on tumour development, and to compare new therapeutic strategies based on the modulation of these processes.
Collapse
Affiliation(s)
- Anna Chmurska
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Karolina Matczak
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, Institute of Biophysics, University of Lodz, Pomorska Street 141/143, 90-236 Lodz, Poland; (K.M.); (A.M.)
| | - Agnieszka Marczak
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, Institute of Biophysics, University of Lodz, Pomorska Street 141/143, 90-236 Lodz, Poland; (K.M.); (A.M.)
| |
Collapse
|
13
|
Nik Nabil WN, Xi Z, Song Z, Jin L, Zhang XD, Zhou H, De Souza P, Dong Q, Xu H. Towards a Framework for Better Understanding of Quiescent Cancer Cells. Cells 2021; 10:cells10030562. [PMID: 33807533 PMCID: PMC7999675 DOI: 10.3390/cells10030562] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 12/15/2022] Open
Abstract
Quiescent cancer cells (QCCs) are cancer cells that are reversibly suspended in G0 phase with the ability to re-enter the cell cycle and initiate tumor growth, and, ultimately, cancer recurrence and metastasis. QCCs are also therapeutically challenging due to their resistance to most conventional cancer treatments that selectively act on proliferating cells. Considering the significant impact of QCCs on cancer progression and treatment, better understanding of appropriate experimental models, and the evaluation of QCCs are key questions in the field that have direct influence on potential pharmacological interventions. Here, this review focuses on existing and emerging preclinical models and detection methods for QCCs and discusses their respective features and scope for application. By providing a framework for selecting appropriate experimental models and investigative methods, the identification of the key players that regulate the survival and activation of QCCs and the development of more effective QCC-targeting therapeutic agents may mitigate the consequences of QCCs.
Collapse
Affiliation(s)
- Wan Najbah Nik Nabil
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (W.N.N.N.); (Z.X.); (Z.S.)
- Pharmaceutical Services Programme, Ministry of Health, Petaling Jaya 46200, Malaysia
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (W.N.N.N.); (Z.X.); (Z.S.)
| | - Zejia Song
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (W.N.N.N.); (Z.X.); (Z.S.)
| | - Lei Jin
- School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW 2308, Australia;
| | - Xu Dong Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW 2308, Australia;
| | - Hua Zhou
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| | - Paul De Souza
- School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia;
| | - Qihan Dong
- Chinese Medicine Anti-Cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
- Correspondence: (Q.D.); (H.X.)
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
- Correspondence: (Q.D.); (H.X.)
| |
Collapse
|
14
|
Abstract
Quiescence is a cellular state in which a cell remains out of the cell cycle but retains the capacity to divide. The unique ability of adult stem cells to maintain quiescence is crucial for life-long tissue homeostasis and regenerative capacity. Quiescence has long been viewed as an inactive state but recent studies have shown that it is in fact an actively regulated process and that adult stem cells are highly reactive to extrinsic stimuli. This has fuelled hopes of boosting the reactivation potential of adult stem cells to improve tissue function during ageing. In this Review, we provide a perspective of the quiescent state and discuss how quiescent adult stem cells transition into the cell cycle. We also discuss current challenges in the field, highlighting recent technical advances that could help overcome some of these challenges.
Collapse
Affiliation(s)
- Noelia Urbán
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter Campus (VBC), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Tom H Cheung
- Division of Life Science, Center for Stem Cell Research, Center of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, and Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, The Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, Guangdong 518057, China
| |
Collapse
|
15
|
Jiang X, Li Y, Feng JL, Nik Nabil WN, Wu R, Lu Y, Liu H, Xi ZC, Xu HX. Safrana l Prevents Prostate Cancer Recurrence by Blocking the Re-activation of Quiescent Cancer Cells via Downregulation of S-Phase Kinase-Associated Protein 2. Front Cell Dev Biol 2021; 8:598620. [PMID: 33392189 PMCID: PMC7772204 DOI: 10.3389/fcell.2020.598620] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/19/2020] [Indexed: 01/01/2023] Open
Abstract
The re-proliferation of quiescent cancer cells is considered to be the primary contributor to prostate cancer (Pca) recurrence and progression. In this study, we investigated the inhibitory effect of safranal, a monoterpene aldehyde isolated from Crocus sativus (saffron), on the re-proliferation of quiescent Pca cells in vitro and in vivo. The results showed that safranal efficiently blocked the re-activation of quiescent Pca cells by downregulating the G0/G1 cell cycle regulatory proteins CDK2, CDK4, CDK6, and phospho-Rb at Ser807/811 and elevating the levels of cyclin-dependent kinase inhibitors, p21 and p27. Further investigation on the underlying mechanisms revealed that safranal suppressed the mRNA and protein expression levels of Skp2, possibly through the deregulation of the transcriptional activity of two major transcriptional factors, E2F1 and NF-κB subunits. Moreover, safranal inhibited AKT phosphorylation at Ser473 and deregulated both canonical and non-canonical NF-κB signaling pathways. Safranal suppressed the tumor growth of quiescent Pca cell xenografts in vivo. Furthermore, safranal-treated tumor tissues exhibited a reduction in Skp2, E2F1, NF-κB p65, p-IκBα (Ser32), c-MYC, p-Rb (Ser807), CDK4, CDK6, and CDK2 and an elevation of p27 and p21 protein levels. Therefore, our findings demonstrate that safranal suppresses cell cycle re-entry of quiescent Pca cells in vitro and in vivo plausibly by repressing the transcriptional activity of two major transcriptional activators of Skp2, namely, E2F1 and NF-κB, through the downregulation of AKT phosphorylation and NF-κB signaling pathways, respectively.
Collapse
Affiliation(s)
- Xue Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ji-Ling Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wan Najbah Nik Nabil
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Pharmaceutical Services Program, Ministry of Health, Petaling Jaya, Malaysia
| | - Rong Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Lu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Liu
- Hospital Management Office, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhi-Chao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong-Xi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Lee SA, Li KN, Tumbar T. Stem cell-intrinsic mechanisms regulating adult hair follicle homeostasis. Exp Dermatol 2020; 30:430-447. [PMID: 33278851 DOI: 10.1111/exd.14251] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
Adult hair follicle stem cells (HFSCs) undergo dynamic and periodic molecular changes in their cellular states throughout the hair homeostatic cycle. These states are tightly regulated by cell-intrinsic mechanisms and by extrinsic signals from the microenvironment. HFSCs are essential not only for fuelling hair growth, but also for skin wound healing. Increasing evidence suggests an important role of HFSCs in organizing multiple skin components around the hair follicle, thus functioning as an organizing centre during adult skin homeostasis. Here, we focus on recent findings on cell-intrinsic mechanisms of HFSC homeostasis, which include transcription factors, histone modifications, DNA regulatory elements, non-coding RNAs, cell metabolism, cell polarity and post-transcriptional mRNA processing. Several transcription factors are now known to participate in well-known signalling pathways that control hair follicle homeostasis, as well as in super-enhancer activities to modulate HFSC and progenitor lineage progression. Interestingly, HFSCs have been shown to secrete molecules that are important in guiding the organization of several skin components around the hair follicle, including nerves, arrector pili muscle and vasculature. Finally, we discuss recent technological advances in the field such as single-cell RNA sequencing and live imaging, which revealed HFSC and progenitor heterogeneity and brought new light to understanding crosstalking between HFSCs and the microenvironment. The field is well on its way to generate a comprehensive map of molecular interactions that should serve as a solid theoretical platform for application in hair and skin disease and ageing.
Collapse
Affiliation(s)
- Seon A Lee
- Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Kefei Nina Li
- Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Tudorita Tumbar
- Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
17
|
Sun Q, Hao Q, Lin YC, Song YJ, Bangru S, Arif W, Tripathi V, Zhang Y, Cho JH, Freier SM, Jenkins LM, Ma J, Yoon JH, Kalsotra A, Lal A, Prasanth SG, Prasanth KV. Antagonism between splicing and microprocessor complex dictates the serum-induced processing of lnc- MIRHG for efficient cell cycle reentry. RNA (NEW YORK, N.Y.) 2020; 26:1603-1620. [PMID: 32675111 PMCID: PMC7566567 DOI: 10.1261/rna.075309.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/08/2020] [Indexed: 05/03/2023]
Abstract
Cellular quiescence and cell cycle reentry regulate vital biological processes such as cellular development and tissue homeostasis and are controlled by precise regulation of gene expression. The roles of long noncoding RNAs (lncRNAs) during these processes remain to be elucidated. By performing genome-wide transcriptome analyses, we identify differential expression of several hundreds of lncRNAs, including a significant number of the less-characterized class of microRNA-host-gene (MIRHG) lncRNAs or lnc-MIRHGs, during cellular quiescence and cell cycle reentry in human diploid fibroblasts. We observe that MIR222HG lncRNA displays serum-stimulated RNA processing due to enhanced splicing of the host nascent pri-MIR222HG transcript. The pre-mRNA splicing factor SRSF1 negatively regulates the microprocessor-catalyzed cleavage of pri-miR-222, thereby increasing the cellular pool of the mature MIR222HG Association of SRSF1 to pri-MIR222HG, including to a mini-exon, which partially overlaps with the primary miR-222 precursor, promotes serum-stimulated splicing over microRNA processing of MIR222HG Further, we observe that the increased levels of spliced MIR222HG in serum-stimulated cells promote the cell cycle reentry post quiescence in a microRNA-independent manner. MIR222HG interacts with DNM3OS, another lncRNA whose expression is elevated upon serum-stimulation, and promotes cell cycle reentry. The double-stranded RNA binding protein ILF3/2 complex facilitates MIR222HG:DNM3OS RNP complex assembly, thereby promoting DNM3OS RNA stability. Our study identifies a novel mechanism whereby competition between the splicing and microprocessor machinery modulates the serum-induced RNA processing of MIR222HG, which dictates cell cycle reentry.
Collapse
Affiliation(s)
- Qinyu Sun
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Qinyu Hao
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Yo-Chuen Lin
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - You Jin Song
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Sushant Bangru
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Waqar Arif
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Vidisha Tripathi
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Yang Zhang
- School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Jung-Hyun Cho
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Susan M Freier
- Ionis Pharmaceuticals Inc., Carlsbad, California 92008, USA
| | - Lisa M Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| | - Jian Ma
- School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Je-Hyun Yoon
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Ashish Lal
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Supriya G Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
18
|
Chamseddin BH, Le LQ. Management of cutaneous neurofibroma: current therapy and future directions. Neurooncol Adv 2020; 2:i107-i116. [PMID: 32642736 PMCID: PMC7317049 DOI: 10.1093/noajnl/vdz034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is a life-long neurocutaneous disorder characterized by a predisposition to tumor development, including cutaneous neurofibroma (cNF), the hallmark of the disease. cNF is a histologically benign, multicellular tumor formed in virtually most individuals with NF1. It is considered the most burdensome feature of the disorder due to their physical discomfort, cosmetically disfiguring appearance, and psychosocial burden. Management of cNF remains a challenge in the medical field. Effective medicinal treatment for cNF does not exist at this time. Trials aimed at targeting individual components of the neoplasm such as mast cells with Ketotifen have not shown much success. Physical removal or destruction has been the mainstay of therapy. Surgical removal gives excellent cosmetic results, but risk in general anesthesia may require trained specialists. Destructive laser such as CO2 laser is effective in treating hundreds of tumors at one time but has high risk of scarring hypopigmentation or hyperpigmentation that alter cosmetic outcomes. A robust, low-risk surgical technique has been developed, which may be performed in clinic using traditional biopsy tools that may be more accessible to NF1 patients worldwide than contemporary techniques including Er:YAG or Nd:YAG laser. In this review, specific recommendations for management of cNFs are made based on symptoms, clinical expertise, and available resources. Additionally, antiproliferative agents aimed at stimulating cellular quiescence are explored.
Collapse
Affiliation(s)
- Bahir H Chamseddin
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Lu Q Le
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
- Neurofibromatosis Clinic, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
19
|
Lee HY, Hong IS. Metabolic Regulation and Related Molecular Mechanisms in Various Stem Cell Functions. Curr Stem Cell Res Ther 2020; 15:531-546. [PMID: 32394844 DOI: 10.2174/1574888x15666200512105347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/11/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
Abstract
Recent studies on the mechanisms that link metabolic changes with stem cell fate have deepened our understanding of how specific metabolic pathways can regulate various stem cell functions during the development of an organism. Although it was originally thought to be merely a consequence of the specific cell state, metabolism is currently known to play a critical role in regulating the self-renewal capacity, differentiation potential, and quiescence of stem cells. Many studies in recent years have revealed that metabolic pathways regulate various stem cell behaviors (e.g., selfrenewal, migration, and differentiation) by modulating energy production through glycolysis or oxidative phosphorylation and by regulating the generation of metabolites, which can modulate multiple signaling pathways. Therefore, a more comprehensive understanding of stem cell metabolism could allow us to establish optimal culture conditions and differentiation methods that would increase stem cell expansion and function for cell-based therapies. However, little is known about how metabolic pathways regulate various stem cell functions. In this context, we review the current advances in metabolic research that have revealed functional roles for mitochondrial oxidative phosphorylation, anaerobic glycolysis, and oxidative stress during the self-renewal, differentiation and aging of various adult stem cell types. These approaches could provide novel strategies for the development of metabolic or pharmacological therapies to promote the regenerative potential of stem cells and subsequently promote their therapeutic utility.
Collapse
Affiliation(s)
- Hwa-Yong Lee
- Department of Biomedical Science, Jungwon University, 85 Goesan-eup, Munmu-ro, Goesan-gun, Chungcheongbuk-do 367-700, Korea
| | - In-Sun Hong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| |
Collapse
|
20
|
Vinogradov AE, Anatskaya OV. Cell-cycle dependence of transcriptome gene modules: comparison of regression lines. FEBS J 2020; 287:4427-4439. [PMID: 32083797 DOI: 10.1111/febs.15257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/24/2020] [Accepted: 02/20/2020] [Indexed: 12/17/2022]
Abstract
The transcriptome consists of various gene modules that can be mutually dependent, and ignoring these dependencies may lead to misinterpretation. The most important problem is module dependence on cell-cycle activity. Using meta-analysis of over 30 000 single-cell transcriptomes, we show gene module dependencies on cell-cycle signature, which can be consistently observed in various normal and cancer cells. Transcript levels of receptors, plasma membrane, and differentiation-related genes are negatively regressed on cell-cycle signature. Pluripotency, stress response, DNA repair, chromatin remodeling, proteasomal protein degradation, protein network connectivity, and unicellular evolutionary origin are regressed positively. These effects cannot be explained by partial overlap of corresponding gene sets because they remain if the overlapped genes were removed. We propose a visual analysis of gene module-specific regression lines as complement to an uncurated enrichment analysis. The different lines for a same gene module indicate different cell conditions. The approach is tested on several problems (polyploidy, pluripotency, cancer, phylostratigraphy). Intriguingly, we found variation in cell-cycle activity, which is independent of cell progression through the cycle. The upregulation of G2/M checkpoint genes with downregulation of G2/M transition and cytokinesis is revealed in polyploid cells. A temporal increase in cell-cycle activity at transition from pluripotent to more differentiated state is found in human embryonic stem cells. The upregulation of unicellular interactome cluster in human cancers is shown in single cells with control for cell-cycle activity. The greater scatter around regression line in cancer cells suggests greater heterogeneity caused by deviation from a line of normal cells.
Collapse
Affiliation(s)
| | - Olga V Anatskaya
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
21
|
Medkour Y, Mohammad K, Arlia-Ciommo A, Svistkova V, Dakik P, Mitrofanova D, Rodriguez MEL, Junio JAB, Taifour T, Escudero P, Goltsios FF, Soodbakhsh S, Maalaoui H, Simard É, Titorenko VI. Mechanisms by which PE21, an extract from the white willow Salix alba, delays chronological aging in budding yeast. Oncotarget 2019; 10:5780-5816. [PMID: 31645900 PMCID: PMC6791382 DOI: 10.18632/oncotarget.27209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/27/2019] [Indexed: 01/05/2023] Open
Abstract
We have recently found that PE21, an extract from the white willow Salix alba, slows chronological aging and prolongs longevity of the yeast Saccharomyces cerevisiae more efficiently than any of the previously known pharmacological interventions. Here, we investigated mechanisms through which PE21 delays yeast chronological aging and extends yeast longevity. We show that PE21 causes a remodeling of lipid metabolism in chronologically aging yeast, thereby instigating changes in the concentrations of several lipid classes. We demonstrate that such changes in the cellular lipidome initiate three mechanisms of aging delay and longevity extension. The first mechanism through which PE21 slows aging and prolongs longevity consists in its ability to decrease the intracellular concentration of free fatty acids. This postpones an age-related onset of liponecrotic cell death promoted by excessive concentrations of free fatty acids. The second mechanism of aging delay and longevity extension by PE21 consists in its ability to decrease the concentrations of triacylglycerols and to increase the concentrations of glycerophospholipids within the endoplasmic reticulum membrane. This activates the unfolded protein response system in the endoplasmic reticulum, which then decelerates an age-related decline in protein and lipid homeostasis and slows down an aging-associated deterioration of cell resistance to stress. The third mechanisms underlying aging delay and longevity extension by PE21 consists in its ability to change lipid concentrations in the mitochondrial membranes. This alters certain catabolic and anabolic processes in mitochondria, thus amending the pattern of aging-associated changes in several key aspects of mitochondrial functionality.
Collapse
Affiliation(s)
- Younes Medkour
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Karamat Mohammad
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | | - Veronika Svistkova
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Pamela Dakik
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Darya Mitrofanova
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | | | | - Tarek Taifour
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Paola Escudero
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Fani-Fay Goltsios
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Sahar Soodbakhsh
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Hana Maalaoui
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Éric Simard
- Idunn Technologies Inc., Rosemere, Quebec J7A 4A5, Canada
| | | |
Collapse
|
22
|
Mazzotti E, Teti G, Falconi M, Chiarini F, Barboni B, Mazzotti A, Muttini A. Age-Related Alterations Affecting the Chondrogenic Differentiation of Synovial Fluid Mesenchymal Stromal Cells in an Equine Model. Cells 2019; 8:cells8101116. [PMID: 31547126 PMCID: PMC6829538 DOI: 10.3390/cells8101116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 02/08/2023] Open
Abstract
Osteoarthritis is a degenerative disease that strongly correlates with age and promotes the breakdown of joint cartilage and subchondral bone. There has been a surge of interest in developing cell-based therapies, focused particularly on the use of mesenchymal stromal cells (MSCs) isolated from adult tissues. It seems that MSCs derived from synovial joint tissues exhibit superior chondrogenic ability, but their unclear distribution and low frequency actually limit their clinical application. To date, the influence of aging on synovial joint derived MSCs’ biological characteristics and differentiation abilities remains unknown, and a full understanding of the mechanisms involved in cellular aging is lacking. The aim of this study was therefore to investigate the presence of age-related alterations in synovial fluid MSCs and their influence on the potential ability of MSCs to differentiate toward chondrogenic phenotypes. Synovial fluid MSCs, isolated from healthy equine donors from 3 to 40 years old, were cultured in vitro and stimulated towards chondrogenic differentiation for up to 21 days. An equine model was chosen due to the high degree of similarity of the anatomy of the knee joint to the human knee joint and as spontaneous disorders develop that are clinically relevant to similar human disorders. The results showed a reduction in cell proliferation correlated with age and the presence of age-related tetraploid cells. Ultrastructural analysis demonstrated the presence of morphological features correlated with aging such as endoplasmic reticulum stress, autophagy, and mitophagy. Alcian blue assay and real-time PCR data showed a reduction of efficiency in the chondrogenic differentiation of aged synovial fluid MSCs compared to young MSCs. All these data highlighted the influence of aging on MSCs’ characteristics and ability to differentiate towards chondrogenic differentiation and emphasize the importance of considering age-related alterations of MSCs in clinical applications.
Collapse
Affiliation(s)
- Eleonora Mazzotti
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy.
| | - Gabriella Teti
- Department of Biomedical and Neuromotor Sciences, University di Bologna, 40126 Bologna, Italy.
| | - Mirella Falconi
- Department of Biomedical and Neuromotor Sciences, University di Bologna, 40126 Bologna, Italy.
| | - Francesca Chiarini
- CNR-National Research Council of Italy, Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, 40136 Bologna, Italy.
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Barbara Barboni
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy.
| | - Antonio Mazzotti
- st Orthopedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, Via Giulio Cesare Pupilli 1, 40136 Bologna, Italy.
| | - Aurelio Muttini
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy.
- Stem TeCh Group, 66100 Chieti, Italy.
| |
Collapse
|
23
|
Evolutionary framework of the human interactome: Unicellular and multicellular giant clusters. Biosystems 2019; 181:82-87. [PMID: 31077747 DOI: 10.1016/j.biosystems.2019.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/06/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023]
Abstract
The main contradiction of multicellularity (MCM) is between the unicellular (UC) and multicellular (MC) levels. In human interactome we revealed two giant clusters with MC and UC medians (and several smaller ones with MC medians). The enrichment of these clusters by phylostrata and by functions support the MC versus UC division. The total interactome and the giant clusters show a core-periphery evolutionary growth. From viewpoint of the MCM, the most important is the placement of genes, appearing at UC evolutionary stage, in the MC clusters. Thus, genes involved in vesicle-mediated transport, cell cycle, cellular responses to stress, post-translational modifications and many diseases appeared at UC evolutionary stage but are placed mostly in MC clusters. Genes downregulated with age are enriched in UC cluster, whereas the upregulated genes are preferentially placed in MC giant cluster. The tumor suppressor and pluripotency regulating pathways are also enriched in MC giant cluster. Therefore, this cluster probably operates as 'internal manager' constraining runaway unicellularity. The clusters have denser interactions within than between them, therefore they can serve as attractors (stable states of dynamic systems) of cellular programs. Importantly, the UC cluster have a higher inside/outside connection ratio compared with MC clusters, which suggests a stronger attractor effect and may explain why cells of MC organisms are prone to oncogenesis. The evolutionary clustering of human interactome elucidates the MC control over functions appearing at UC evolutionary stage and can build a framework for biosystems studies focusing on the interplay between UC and MC levels.
Collapse
|
24
|
Mohammad K, Dakik P, Medkour Y, Mitrofanova D, Titorenko VI. Quiescence Entry, Maintenance, and Exit in Adult Stem Cells. Int J Mol Sci 2019; 20:ijms20092158. [PMID: 31052375 PMCID: PMC6539837 DOI: 10.3390/ijms20092158] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/24/2019] [Accepted: 04/28/2019] [Indexed: 12/13/2022] Open
Abstract
Cells of unicellular and multicellular eukaryotes can respond to certain environmental cues by arresting the cell cycle and entering a reversible state of quiescence. Quiescent cells do not divide, but can re-enter the cell cycle and resume proliferation if exposed to some signals from the environment. Quiescent cells in mammals and humans include adult stem cells. These cells exhibit improved stress resistance and enhanced survival ability. In response to certain extrinsic signals, adult stem cells can self-renew by dividing asymmetrically. Such asymmetric divisions not only allow the maintenance of a population of quiescent cells, but also yield daughter progenitor cells. A multistep process of the controlled proliferation of these progenitor cells leads to the formation of one or more types of fully differentiated cells. An age-related decline in the ability of adult stem cells to balance quiescence maintenance and regulated proliferation has been implicated in many aging-associated diseases. In this review, we describe many traits shared by different types of quiescent adult stem cells. We discuss how these traits contribute to the quiescence, self-renewal, and proliferation of adult stem cells. We examine the cell-intrinsic mechanisms that allow establishing and sustaining the characteristic traits of adult stem cells, thereby regulating quiescence entry, maintenance, and exit.
Collapse
Affiliation(s)
- Karamat Mohammad
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Paméla Dakik
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Younes Medkour
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Darya Mitrofanova
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Vladimir I Titorenko
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| |
Collapse
|
25
|
Nakayama KH, Shayan M, Huang NF. Engineering Biomimetic Materials for Skeletal Muscle Repair and Regeneration. Adv Healthc Mater 2019; 8:e1801168. [PMID: 30725530 PMCID: PMC6589032 DOI: 10.1002/adhm.201801168] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/21/2018] [Indexed: 11/12/2022]
Abstract
Although skeletal muscle is highly regenerative following injury or disease, endogenous self-regeneration is severely impaired in conditions of volume traumatic muscle loss. Consequently, tissue engineering approaches are a promising means to regenerate skeletal muscle. Biological scaffolds serve as not only structural support for the promotion of cellular ingrowth but also impart potent modulatory signaling cues that may be beneficial for tissue regeneration. In this work, the progress of tissue engineering approaches for skeletal muscle engineering and regeneration is overviewed, with a focus on the techniques to create biomimetic engineered tissue using extracellular cues. These factors include mechanical and electrical stimulation, geometric patterning, and delivery of growth factors or other bioactive molecules. The progress of evaluating the therapeutic efficacy of these approaches in preclinical models of muscle injury is further discussed.
Collapse
Affiliation(s)
- Karina H Nakayama
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, 94305, USA
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, 94304, USA
- The Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA
| | - Mahdis Shayan
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, 94305, USA
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, 94304, USA
- The Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA
| | - Ngan F Huang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, 94305, USA
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, 94304, USA
- The Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
26
|
Periostin and Integrin Signaling in Stem Cell Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1132:163-176. [DOI: 10.1007/978-981-13-6657-4_16] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Gulaia V, Kumeiko V, Shved N, Cicinskas E, Rybtsov S, Ruzov A, Kagansky A. Molecular Mechanisms Governing the Stem Cell's Fate in Brain Cancer: Factors of Stemness and Quiescence. Front Cell Neurosci 2018; 12:388. [PMID: 30510501 PMCID: PMC6252330 DOI: 10.3389/fncel.2018.00388] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/09/2018] [Indexed: 12/25/2022] Open
Abstract
Cellular quiescence is a reversible, non-cycling state controlled by epigenetic, transcriptional and niche-associated molecular factors. Quiescence is a condition where molecular signaling pathways maintain the poised cell-cycle state whilst enabling rapid cell cycle re-entry. To achieve therapeutic breakthroughs in oncology it is crucial to decipher these molecular mechanisms employed by the cancerous milieu to control, maintain and gear stem cells towards re-activation. Cancer stem-like cells (CSCs) have been extensively studied in most malignancies, including glioma. Here, the aberrant niche activities skew the quiescence/activation equilibrium, leading to rapid tumor relapse after surgery and/or chemotherapy. Unraveling quiescence mechanisms promises to afford prevention of (often multiple) relapses, a key problem in current glioma treatment. This review article covers the current knowledge regarding normal and aberrant cellular quiescence control whilst also exploring how different molecular mechanisms and properties of the neighboring cells can influence the molecular processes behind glioma stem cell quiescence.
Collapse
Affiliation(s)
- Valeriia Gulaia
- Centre for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Vadim Kumeiko
- Centre for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Nikita Shved
- Centre for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Eduardas Cicinskas
- Department of Cellular Biology and Genetics, School of Natural Sciences, Far Eastern Federal University, Vladivostok, Russia
- Laboratory of Pharmacology and Bioassays, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Stanislav Rybtsov
- Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, SCRM Bioquarter, Scotland, United Kingdom
| | - Alexey Ruzov
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), Division of Cancer and Stem Cells, School of Medicine, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Alexander Kagansky
- Centre for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| |
Collapse
|
28
|
Fiore APZP, Ribeiro PDF, Bruni-Cardoso A. Sleeping Beauty and the Microenvironment Enchantment: Microenvironmental Regulation of the Proliferation-Quiescence Decision in Normal Tissues and in Cancer Development. Front Cell Dev Biol 2018; 6:59. [PMID: 29930939 PMCID: PMC6001001 DOI: 10.3389/fcell.2018.00059] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/18/2018] [Indexed: 01/18/2023] Open
Abstract
Cells from prokaryota to the more complex metazoans cease proliferating at some point in their lives and enter a reversible, proliferative-dormant state termed quiescence. The appearance of quiescence in the course of evolution was essential to the acquisition of multicellular specialization and compartmentalization and is also a central aspect of tissue function and homeostasis. But what makes a cell cease proliferating even in the presence of nutrients, growth factors, and mitogens? And what makes some cells "wake up" when they should not, as is the case in cancer? Here, we summarize and discuss evidence showing how microenvironmental cues such as those originating from metabolism, extracellular matrix (ECM) composition and arrangement, neighboring cells and tissue architecture control the cellular proliferation-quiescence decision, and how this complex regulation is corrupted in cancer.
Collapse
Affiliation(s)
| | | | - Alexandre Bruni-Cardoso
- e-Signal Laboratory, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|