1
|
Li Y, Ding Q, Wang H. Toxic Effects of Cobalt on Erythroid Progenitor Cells. Chem Res Toxicol 2025; 38:307-313. [PMID: 39810741 DOI: 10.1021/acs.chemrestox.4c00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Cobalt is a crucial trace element that widely exists in natural environments and is necessary for normal physiological function. However, excessive cobalt exposure leads to various adverse health effects, especially hematological and endocrine dysfunctions. Here, we investigated the toxicity of cobalt on early erythropoiesis by using ex vivo cultured erythroid progenitor cells (EPCs). We exposed EPCs to cobalt chloride (CoCl2) and observed that their proliferation was significantly reduced after treatment with 50 μM CoCl2 for 3 days and 10 μM CoCl2 for 4 days. Furthermore, CoCl2 exposure reduced the proportion of S phase cells and induced apoptosis of EPCs in a dose-dependent manner (20-100 μM). Notably, further studies revealed that CoCl2 exposure inhibited the expression and phosphorylation of the erythroid proliferation master gene c-Kit. During EPC differentiation, treatment with CoCl2 hindered the enucleation of erythrocytes. Consistent with these findings, the RNA-seq results revealed that CoCl2 treatment inhibited the expression of several genes related to both proliferation and differentiation. The gene responsible for nucleoprotein export during enucleation, Xpo7, was also downregulated. Gene ontology analysis revealed that CoCl2 treatment inhibited a variety of biological processes, including DNA replication and ribosome synthesis. In summary, we demonstrated that sustained excessive CoCl2 exposure impaired the function of the EPCs.
Collapse
Affiliation(s)
- Yao Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Qingjiang Ding
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| |
Collapse
|
2
|
Li Y, Liang Z, Wang H. Protocol for sorting and culturing of mouse early erythroid progenitor BFU-E cells. STAR Protoc 2024; 5:102718. [PMID: 38088932 PMCID: PMC10757283 DOI: 10.1016/j.xpro.2023.102718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/05/2023] [Accepted: 10/27/2023] [Indexed: 01/02/2024] Open
Abstract
Techniques allowing the long-term culture of the burst-forming unit of erythroid (BFU-E) progenitor cells are essential for understanding erythropoiesis. Here, we present a protocol for sorting mouse BFU-E cells and culturing them in a medium that promotes BFU-E cell expansion. We describe steps for isolating BFU-E cells from mouse fetal livers by combining magnetic microbeads with flow cytometry and culturing BFU-E cells with a specific expansion media. This approach can enhance the production of BFU-E cells. For complete details on the use and execution of this protocol, please refer to Li et al..1.
Collapse
Affiliation(s)
- Yao Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziyu Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Nai A, Cordero-Sanchez C, Tanzi E, Pagani A, Silvestri L, Di Modica SM. Cellular and animal models for the investigation of β-thalassemia. Blood Cells Mol Dis 2024; 104:102761. [PMID: 37271682 DOI: 10.1016/j.bcmd.2023.102761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/06/2023]
Abstract
β-Thalassemia is a genetic form of anemia due to mutations in the β-globin gene, that leads to ineffective and extramedullary erythropoiesis, abnormal red blood cells and secondary iron-overload. The severity of the disease ranges from mild to lethal anemia based on the residual levels of globins production. Despite being a monogenic disorder, the pathophysiology of β-thalassemia is multifactorial, with different players contributing to the severity of anemia and secondary complications. As a result, the identification of effective therapeutic strategies is complex, and the treatment of patients is still suboptimal. For these reasons, several models have been developed in the last decades to provide experimental tools for the study of the disease, including erythroid cell lines, cultures of primary erythroid cells and transgenic animals. Years of research enabled the optimization of these models and led to decipher the mechanisms responsible for globins deregulation and ineffective erythropoiesis in thalassemia, to unravel the role of iron homeostasis in the disease and to identify and validate novel therapeutic targets and agents. Examples of successful outcomes of these analyses include iron restricting agents, currently tested in the clinics, several gene therapy vectors, one of which was recently approved for the treatment of most severe patients, and a promising gene editing strategy, that has been shown to be effective in a clinical trial. This review provides an overview of the available models, discusses pros and cons, and the key findings obtained from their study.
Collapse
Affiliation(s)
- Antonella Nai
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, via Olgettina 60, Milan, Italy; Vita-Salute San Raffaele University, via Olgettina 58, Milan, Italy.
| | - Celia Cordero-Sanchez
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, via Olgettina 60, Milan, Italy
| | - Emanuele Tanzi
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, via Olgettina 60, Milan, Italy
| | - Alessia Pagani
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, via Olgettina 60, Milan, Italy
| | - Laura Silvestri
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, via Olgettina 60, Milan, Italy; Vita-Salute San Raffaele University, via Olgettina 58, Milan, Italy
| | - Simona Maria Di Modica
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, via Olgettina 60, Milan, Italy
| |
Collapse
|
4
|
Liao R, Babatunde A, Qiu S, Harikumar H, Coon JJ, Overmyer KA, Hannun YA, Luberto C, Bresnick EH. A transcriptional network governing ceramide homeostasis establishes a cytokine-dependent developmental process. Nat Commun 2023; 14:7262. [PMID: 37945603 PMCID: PMC10636182 DOI: 10.1038/s41467-023-42978-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
Transcriptional mechanisms controlling developmental processes establish and maintain proteomic networks, which can govern the levels of intracellular small molecules. Although dynamic changes in bioactive small molecules can link transcription factor and genome activity with cell state transitions, many mechanistic questions are unresolved. Using quantitative lipidomics and multiomics, we discover that the hematopoietic transcription factor GATA1 establishes ceramide homeostasis during erythroid differentiation by regulating genes encoding sphingolipid metabolic enzymes. Inhibiting a GATA1-induced sphingolipid biosynthetic enzyme, delta(4)-desaturase, or disrupting ceramide homeostasis with cell-permeable dihydroceramide or ceramide is detrimental to erythroid, but not myeloid, progenitor activity. Coupled with genetic editing-based rewiring of the regulatory circuitry, we demonstrate that ceramide homeostasis commissions vital stem cell factor and erythropoietin signaling by opposing an inhibitory protein phosphatase 2A-dependent, dual-component mechanism. Integrating bioactive lipids as essential components of GATA factor mechanisms to control cell state transitions has implications for diverse cell and tissue types.
Collapse
Affiliation(s)
- Ruiqi Liao
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Abiola Babatunde
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Stephanie Qiu
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Hamsini Harikumar
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Joshua J Coon
- Department of Biomolecular Chemistry, National Center for Quantitative Biology of Complex Systems, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Katherine A Overmyer
- Department of Biomolecular Chemistry, National Center for Quantitative Biology of Complex Systems, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
| | - Yusuf A Hannun
- Department of Medicine, Stony Book University, Stony Brook, NY, USA
- Northport Veterans Affairs Medical Center, Northport, NY, USA
| | - Chiara Luberto
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Emery H Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
5
|
Li Y, Liang ZY, Wang HL. N6-methyl-2'-deoxyadenosine promotes self-renewal of BFU-E progenitor in erythropoiesis. iScience 2023; 26:106924. [PMID: 37283807 PMCID: PMC10239700 DOI: 10.1016/j.isci.2023.106924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/08/2023] [Accepted: 05/15/2023] [Indexed: 06/08/2023] Open
Abstract
Red blood cells supply the oxygen required for all human cells and are in demand for emerging blood-loss therapy. Here we identified N6-methyl-2'-deoxyadenosine (6mdA) as an agonist that promotes the hyperproliferation of burst-forming unit erythroid (BFU-E) progenitor cells. In addition, 6mdA represses the apoptosis of erythroid progenitor cells (EPCs). Combined use of with SCF and EPO enabled cultures of isolated BFU-E to be expanded up to 5,000-fold. Transcriptome analysis showed that 6mdA upregulates the expression of the EPC-associated factors c-Kit, Myb, and Gata2 and downregulates that of the erythroid maturation-related transcription factors Gata1, Spi1, and Klf1. Mechanistic studies suggested that 6mdA enhances and prolongs the activation of erythropoiesis-associated master gene c-Kit and its downstream signaling, leading to expansion and accumulation of EPCs. Collectively, we demonstrate that 6mdA can efficiently stimulate the EPC hyperproliferation and provide a new regenerative medicine recipe to improve ex vivo generation of red blood cells.
Collapse
Affiliation(s)
- Yao Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Yu Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai-Lin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
| |
Collapse
|
6
|
Tran VL, Liu P, Katsumura KR, Kim E, Schoff BM, Johnson KD, Bresnick EH. Restricting genomic actions of innate immune mediators on fetal hematopoietic progenitor cells. iScience 2023; 26:106297. [PMID: 36950124 PMCID: PMC10025987 DOI: 10.1016/j.isci.2023.106297] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/03/2023] [Accepted: 02/24/2023] [Indexed: 03/15/2023] Open
Abstract
Innate immune signaling protects against pathogens, controls hematopoietic development, and functions in oncogenesis, yet the relationship between these mechanisms is undefined. Downregulating the GATA2 transcription factor in fetal hematopoietic progenitor cells upregulates genes encoding innate immune regulators, increases Interferon-γ (IFNγ) signaling, and disrupts differentiation. We demonstrate that deletion of an enhancer that confers GATA2 expression in fetal progenitors elevated Toll-like receptor (TLR) TLR1/2 and TLR2/6 expression and signaling. Rescue by expressing GATA2 downregulated elevated TLR signaling. IFNγ amplified TLR1/2 and TLR2/6 signaling in GATA2-deficient progenitors, synergistically activating cytokine/chemokine genes and elevating cytokine/chemokine production in myeloid cell progeny. Genomic analysis of how innate immune signaling remodels the GATA2-deficient progenitor transcriptome revealed hypersensitive responses at innate immune genes harboring motifs for signal-dependent transcription factors and factors not linked to these mechanisms. As GATA2 establishes a transcriptome that constrains innate immune signaling, insufficient GATA2 renders fetal progenitor cells hypersensitive to innate immune signaling.
Collapse
Affiliation(s)
- Vu L. Tran
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Peng Liu
- Department of Biostatistics and Biomedical Informatics, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Koichi R. Katsumura
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Erin Kim
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Bjorn M. Schoff
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kirby D. Johnson
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Emery H. Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
7
|
Vermunt MW, Luan J, Zhang Z, Thrasher AJ, Huang A, Saari MS, Khandros E, Beagrie RA, Zhang S, Vemulamada P, Brilleman M, Lee K, Yano JA, Giardine BM, Keller CA, Hardison RC, Blobel GA. Gene silencing dynamics are modulated by transiently active regulatory elements. Mol Cell 2023; 83:715-730.e6. [PMID: 36868189 PMCID: PMC10719944 DOI: 10.1016/j.molcel.2023.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 12/05/2022] [Accepted: 02/03/2023] [Indexed: 03/05/2023]
Abstract
Transcriptional enhancers have been extensively characterized, but cis-regulatory elements involved in acute gene repression have received less attention. Transcription factor GATA1 promotes erythroid differentiation by activating and repressing distinct gene sets. Here, we study the mechanism by which GATA1 silences the proliferative gene Kit during murine erythroid cell maturation and define stages from initial loss of activation to heterochromatinization. We find that GATA1 inactivates a potent upstream enhancer but concomitantly creates a discrete intronic regulatory region marked by H3K27ac, short noncoding RNAs, and de novo chromatin looping. This enhancer-like element forms transiently and serves to delay Kit silencing. The element is ultimately erased via the FOG1/NuRD deacetylase complex, as revealed by the study of a disease-associated GATA1 variant. Hence, regulatory sites can be self-limiting by dynamic co-factor usage. Genome-wide analyses across cell types and species uncover transiently active elements at numerous genes during repression, suggesting that modulation of silencing kinetics is widespread.
Collapse
Affiliation(s)
- Marit W Vermunt
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Jing Luan
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhe Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Pennsylvania, Philadelphia, PA 19104, USA
| | - A Josephine Thrasher
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Anran Huang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Megan S Saari
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Eugene Khandros
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Robert A Beagrie
- Chromatin and Disease Group, Wellcome Centre for Human Genetics, Oxford OX3 7BN, UK
| | - Shiping Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pranay Vemulamada
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Matilda Brilleman
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kiwon Lee
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jennifer A Yano
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Belinda M Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Soukup AA, Matson DR, Liu P, Johnson KD, Bresnick EH. Conditionally pathogenic genetic variants of a hematopoietic disease-suppressing enhancer. SCIENCE ADVANCES 2021; 7:eabk3521. [PMID: 34890222 PMCID: PMC8664263 DOI: 10.1126/sciadv.abk3521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/22/2021] [Indexed: 05/11/2023]
Abstract
Human genetic variants are classified on the basis of potential pathogenicity to guide clinical decisions. However, mechanistic uncertainties often preclude definitive categorization. Germline coding and enhancer variants within the hematopoietic regulator GATA2 create a bone marrow failure and leukemia predisposition. The conserved murine enhancer promotes hematopoietic stem cell (HSC) genesis, and a single-nucleotide human variant in an Ets motif attenuates chemotherapy-induced hematopoietic regeneration. We describe “conditionally pathogenic” (CP) enhancer motif variants that differentially affect hematopoietic development and regeneration. The Ets motif variant functioned autonomously in hematopoietic cells to disrupt hematopoiesis. Because an epigenetically silenced normal allele can exacerbate phenotypes of a pathogenic heterozygous variant, we engineered a bone marrow failure model harboring the Ets motif variant and a severe enhancer mutation on the second allele. Despite normal developmental hematopoiesis, regeneration in response to chemotherapy, inflammation, and a therapeutic HSC mobilizer was compromised. The CP paradigm informs mechanisms underlying phenotypic plasticity and clinical genetics.
Collapse
Affiliation(s)
- Alexandra A. Soukup
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Daniel R. Matson
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Peng Liu
- University of Wisconsin Carbone Cancer Center, Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kirby D. Johnson
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Emery H. Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
9
|
Mehta C, Fraga de Andrade I, Matson DR, Dewey CN, Bresnick EH. RNA-regulatory exosome complex confers cellular survival to promote erythropoiesis. Nucleic Acids Res 2021; 49:9007-9025. [PMID: 34059908 PMCID: PMC8450083 DOI: 10.1093/nar/gkab367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/29/2021] [Accepted: 05/27/2021] [Indexed: 01/03/2023] Open
Abstract
Cellular differentiation requires vast remodeling of transcriptomes, and therefore machinery mediating remodeling controls differentiation. Relative to transcriptional mechanisms governing differentiation, post-transcriptional processes are less well understood. As an important post-transcriptional determinant of transcriptomes, the RNA exosome complex (EC) mediates processing and/or degradation of select RNAs. During erythropoiesis, the erythroid transcription factor GATA1 represses EC subunit genes. Depleting EC structural subunits prior to GATA1-mediated repression is deleterious to erythroid progenitor cells. To assess the importance of the EC catalytic subunits Dis3 and Exosc10 in this dynamic process, we asked if these subunits function non-redundantly to control erythropoiesis. Dis3 or Exosc10 depletion in primary murine hematopoietic progenitor cells reduced erythroid progenitors and their progeny, while sparing myeloid cells. Dis3 loss severely compromised erythroid progenitor and erythroblast survival, rendered erythroblasts hypersensitive to apoptosis-inducing stimuli and induced γ-H2AX, indicative of DNA double-stranded breaks. Dis3 loss-of-function phenotypes were more severe than those caused by Exosc10 depletion. We innovated a genetic rescue system to compare human Dis3 with multiple myeloma-associated Dis3 mutants S447R and R750K, and only wild type Dis3 was competent to rescue progenitors. Thus, Dis3 establishes a disease mutation-sensitive, cell type-specific survival mechanism to enable a differentiation program.
Collapse
Affiliation(s)
- Charu Mehta
- Department of Cell and Regenerative Biology, Wisconsin Blood Cancer Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Isabela Fraga de Andrade
- Department of Cell and Regenerative Biology, Wisconsin Blood Cancer Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Daniel R Matson
- Department of Cell and Regenerative Biology, Wisconsin Blood Cancer Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Colin N Dewey
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI 53705, USA
| | - Emery H Bresnick
- Department of Cell and Regenerative Biology, Wisconsin Blood Cancer Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
10
|
Turnis ME, Kaminska E, Smith KH, Kartchner BJ, Vogel P, Laxton JD, Ashmun RA, Ney PA, Opferman JT. Requirement for antiapoptotic MCL-1 during early erythropoiesis. Blood 2021; 137:1945-1958. [PMID: 33512417 PMCID: PMC8033457 DOI: 10.1182/blood.2020006916] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 12/22/2020] [Indexed: 01/24/2023] Open
Abstract
Although BCL-xL is critical to the survival of mature erythrocytes, it is still unclear whether other antiapoptotic molecules mediate survival during earlier stages of erythropoiesis. Here, we demonstrate that erythroid-specific Mcl1 deletion results in embryonic lethality beyond embryonic day 13.5 as a result of severe anemia caused by a lack of mature red blood cells (RBCs). Mcl1-deleted embryos exhibit stunted growth, ischemic necrosis, and decreased RBCs in the blood. Furthermore, we demonstrate that MCL-1 is only required during early definitive erythropoiesis; during later stages, developing erythrocytes become MCL-1 independent and upregulate the expression of BCL-xL. Functionally, MCL-1 relies upon its ability to prevent apoptosis to promote erythroid development because codeletion of the proapoptotic effectors Bax and Bak can overcome the requirement for MCL-1 expression. Furthermore, ectopic expression of human BCL2 in erythroid progenitors can compensate for Mcl1 deletion, indicating redundancy between these 2 antiapoptotic family members. These data clearly demonstrate a requirement for MCL-1 in promoting survival of early erythroid progenitors.
Collapse
Affiliation(s)
| | | | | | | | | | - Jonathan D Laxton
- Flow Cytometry and Cell Sorting Shared Resource, St Jude Children's Research Hospital, Memphis, TN; and
| | - Richard A Ashmun
- Flow Cytometry and Cell Sorting Shared Resource, St Jude Children's Research Hospital, Memphis, TN; and
| | | | | |
Collapse
|
11
|
Johnson KD, Conn DJ, Shishkova E, Katsumura KR, Liu P, Shen S, Ranheim EA, Kraus SG, Wang W, Calvo KR, Hsu AP, Holland SM, Coon JJ, Keles S, Bresnick EH. Constructing and deconstructing GATA2-regulated cell fate programs to establish developmental trajectories. J Exp Med 2021; 217:151996. [PMID: 32736380 PMCID: PMC7596813 DOI: 10.1084/jem.20191526] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 02/08/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
Stem and progenitor cell fate transitions constitute key decision points in organismal development that enable access to a developmental path or actively preclude others. Using the hematopoietic system, we analyzed the relative importance of cell fate–promoting mechanisms versus negating fate-suppressing mechanisms to engineer progenitor cells with multilineage differentiation potential. Deletion of the murine Gata2−77 enhancer, with a human equivalent that causes leukemia, downregulates the transcription factor GATA2 and blocks progenitor differentiation into erythrocytes, megakaryocytes, basophils, and granulocytes, but not macrophages. Using multiomics and single-cell analyses, we demonstrated that the enhancer orchestrates a balance between pro- and anti-fate circuitry in single cells. By increasing GATA2 expression, the enhancer instigates a fate-promoting mechanism while abrogating an innate immunity–linked, fate-suppressing mechanism. During embryogenesis, the suppressing mechanism dominated in enhancer mutant progenitors, thus yielding progenitors with a predominant monocytic differentiation potential. Coordinating fate-promoting and -suppressing circuits therefore averts deconstruction of a multifate system into a monopotent system and maintains critical progenitor heterogeneity and functionality.
Collapse
Affiliation(s)
- Kirby D Johnson
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Daniel J Conn
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Evgenia Shishkova
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Koichi R Katsumura
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Peng Liu
- University of Wisconsin Carbone Cancer Center, Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Siqi Shen
- Department of Statistics, University of Wisconsin, Madison, WI
| | - Erik A Ranheim
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Sean G Kraus
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Weixin Wang
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Katherine R Calvo
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Amy P Hsu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Joshua J Coon
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Sunduz Keles
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Emery H Bresnick
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
12
|
Zwifelhofer NM, Cai X, Liao R, Mao B, Conn DJ, Mehta C, Keles S, Xia Y, Bresnick EH. GATA factor-regulated solute carrier ensemble reveals a nucleoside transporter-dependent differentiation mechanism. PLoS Genet 2020; 16:e1009286. [PMID: 33370779 PMCID: PMC7793295 DOI: 10.1371/journal.pgen.1009286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 01/08/2021] [Accepted: 11/18/2020] [Indexed: 01/19/2023] Open
Abstract
Developmental-regulatory networks often include large gene families encoding mechanistically-related proteins like G-protein-coupled receptors, zinc finger transcription factors and solute carrier (SLC) transporters. In principle, a common mechanism may confer expression of multiple members integral to a developmental process, or diverse mechanisms may be deployed. Using genetic complementation and enhancer-mutant systems, we analyzed the 456 member SLC family that establishes the small molecule constitution of cells. This analysis identified SLC gene cohorts regulated by GATA1 and/or GATA2 during erythroid differentiation. As >50 SLC genes shared GATA factor regulation, a common mechanism established multiple members of this family. These genes included Slc29a1 encoding an equilibrative nucleoside transporter (Slc29a1/ENT1) that utilizes adenosine as a preferred substrate. Slc29a1 promoted erythroblast survival and differentiation ex vivo. Targeted ablation of murine Slc29a1 in erythroblasts attenuated erythropoiesis and erythrocyte regeneration in response to acute anemia. Our results reveal a GATA factor-regulated SLC ensemble, with a nucleoside transporter component that promotes erythropoiesis and prevents anemia, and establish a mechanistic link between GATA factor and adenosine mechanisms. We propose that integration of the GATA factor-adenosine circuit with other components of the GATA factor-regulated SLC ensemble establishes the small molecule repertoire required for progenitor cells to efficiently generate erythrocytes. GATA transcription factors endow blood stem and progenitor cells with activities to produce progeny that transport oxygen to protect cells and tissues, evade pathogens and control physiological processes. GATA factors regulate hundreds of genes, and the actions of these genes mediate important biological functions. While the genes have been documented, many questions remain regarding how the “network” components mediate biological functions. The networks include members of large gene families, and the relationships between the regulation and function of individual family members is not well understood. Analyzing datasets from genetic complementation and enhancer mutant systems revealed that GATA factors regulate an ensemble of membrane transporters termed solute carrier proteins (SLCs), which dictate the small molecule composition of cells. Genetic analyses with Slc29a1, which transports adenosine, revealed its function to promote erythrocyte development, and Slc29a1 attenuated anemia in a mouse model. This study revealed the importance of SLC transporters in GATA factor networks. We propose that the GATA factor-adenosine circuit integrates with other SLCs to establish/maintain the small molecule constitution of progenitor cells as a new mechanism to control blood cell development.
Collapse
Affiliation(s)
- Nicole M. Zwifelhofer
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Xiaoli Cai
- Department of Biochemistry and Molecular Biology, Graduate School of Biomedical Sciences, University of Texas McGovern Medical School at Houston, Houston, Texas, United States of America
| | - Ruiqi Liao
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Bin Mao
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Daniel J. Conn
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Charu Mehta
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Sunduz Keles
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Yang Xia
- Department of Biochemistry and Molecular Biology, Graduate School of Biomedical Sciences, University of Texas McGovern Medical School at Houston, Houston, Texas, United States of America
- * E-mail: (YX); (EHB)
| | - Emery H. Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- * E-mail: (YX); (EHB)
| |
Collapse
|
13
|
Liu P, Soukup AA, Bresnick EH, Dewey CN, Keleş S. PRAM: a novel pooling approach for discovering intergenic transcripts from large-scale RNA sequencing experiments. Genome Res 2020; 30:1655-1666. [PMID: 32958497 PMCID: PMC7605252 DOI: 10.1101/gr.252445.119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/27/2020] [Indexed: 11/25/2022]
Abstract
Publicly available RNA-seq data is routinely used for retrospective analysis to elucidate new biology. Novel transcript discovery enabled by joint analysis of large collections of RNA-seq data sets has emerged as one such analysis. Current methods for transcript discovery rely on a '2-Step' approach where the first step encompasses building transcripts from individual data sets, followed by the second step that merges predicted transcripts across data sets. To increase the power of transcript discovery from large collections of RNA-seq data sets, we developed a novel '1-Step' approach named Pooling RNA-seq and Assembling Models (PRAM) that builds transcript models from pooled RNA-seq data sets. We demonstrate in a computational benchmark that 1-Step outperforms 2-Step approaches in predicting overall transcript structures and individual splice junctions, while performing competitively in detecting exonic nucleotides. Applying PRAM to 30 human ENCODE RNA-seq data sets identified unannotated transcripts with epigenetic and RAMPAGE signatures similar to those of recently annotated transcripts. In a case study, we discovered and experimentally validated new transcripts through the application of PRAM to mouse hematopoietic RNA-seq data sets. We uncovered new transcripts that share a differential expression pattern with a neighboring gene Pik3cg implicated in human hematopoietic phenotypes, and we provided evidence for the conservation of this relationship in human. PRAM is implemented as an R/Bioconductor package.
Collapse
Affiliation(s)
- Peng Liu
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Alexandra A Soukup
- Department of Cell and Regenerative Biology, Wisconsin Blood Cancer Research Institute, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53705, USA
| | - Emery H Bresnick
- Department of Cell and Regenerative Biology, Wisconsin Blood Cancer Research Institute, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53705, USA
| | - Colin N Dewey
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin 53706, USA.,Department of Computer Sciences, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Sündüz Keleş
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin 53706, USA.,Department of Statistics, University of Wisconsin, Madison, Wisconsin 53706, USA
| |
Collapse
|
14
|
Katsumura KR, Mehta C, Hewitt KJ, Soukup AA, Fraga de Andrade I, Ranheim EA, Johnson KD, Bresnick EH. Human leukemia mutations corrupt but do not abrogate GATA-2 function. Proc Natl Acad Sci U S A 2018; 115:E10109-E10118. [PMID: 30301799 PMCID: PMC6205465 DOI: 10.1073/pnas.1813015115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
By inducing the generation and function of hematopoietic stem and progenitor cells, the master regulator of hematopoiesis GATA-2 controls the production of all blood cell types. Heterozygous GATA2 mutations cause immunodeficiency, myelodysplastic syndrome, and acute myeloid leukemia. GATA2 disease mutations commonly disrupt amino acid residues that mediate DNA binding or cis-elements within a vital GATA2 intronic enhancer, suggesting a haploinsufficiency mechanism of pathogenesis. Mutations also occur in GATA2 coding regions distinct from the DNA-binding carboxyl-terminal zinc finger (C-finger), including the amino-terminal zinc finger (N-finger), and N-finger function is not established. Whether distinct mutations differentially impact GATA-2 mechanisms is unknown. Here, we demonstrate that N-finger mutations decreased GATA-2 chromatin occupancy and attenuated target gene regulation. We developed a genetic complementation assay to quantify GATA-2 function in myeloid progenitor cells from Gata2 -77 enhancer-mutant mice. GATA-2 complementation increased erythroid and myeloid differentiation. While GATA-2 disease mutants were not competent to induce erythroid differentiation of Lin-Kit+ myeloid progenitors, unexpectedly, they promoted myeloid differentiation and proliferation. As the myelopoiesis-promoting activity of GATA-2 mutants exceeded that of GATA-2, GATA2 disease mutations are not strictly inhibitory. Thus, we propose that the haploinsufficiency paradigm does not fully explain GATA-2-linked pathogenesis, and an amalgamation of qualitative and quantitative defects instigated by GATA2 mutations underlies the complex phenotypes of GATA-2-dependent pathologies.
Collapse
Affiliation(s)
- Koichi R Katsumura
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Charu Mehta
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Kyle J Hewitt
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Alexandra A Soukup
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Isabela Fraga de Andrade
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Erik A Ranheim
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Kirby D Johnson
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Emery H Bresnick
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705;
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| |
Collapse
|