1
|
Andersen CG, Bavnhøj L, Brag S, Bohush A, Chrenková A, Driller JH, Pedersen BP. Comparative analysis of STP6 and STP10 unravels molecular selectivity in sugar transport proteins. Proc Natl Acad Sci U S A 2025; 122:e2417370122. [PMID: 40279393 PMCID: PMC12054785 DOI: 10.1073/pnas.2417370122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 03/20/2025] [Indexed: 04/27/2025] Open
Abstract
The distribution of sugars is crucial for plant energy, signaling, and defense mechanisms. Sugar Transport Proteins (STPs) are Sugar Porters (SPs) that mediate proton-driven cellular uptake of glucose. Some STPs also transport fructose, while others remain highly selective for only glucose. What determines this selectivity, allowing STPs to distinguish between compounds with highly similar chemical composition, remains unknown. Here, we present the structure of Arabidopsis thaliana STP6 in an inward-occluded conformational state with glucose bound and demonstrate its role as both a glucose and fructose transporter. We perform a comparative analysis of STP6 with the glucose-selective STP10 using in vivo and in vitro systems, demonstrating how different experimental setups strongly influence kinetic transport properties. We analyze the properties of the monosaccharide binding site and show that the position of a single methyl group in the binding site is sufficient to shuffle glucose and fructose specificity, providing detailed insights into the fine-tuned dynamics of affinity-induced specificity for sugar uptake. Altogether, these findings enhance our understanding of sugar selectivity in STPs and more broadly SP proteins.
Collapse
Affiliation(s)
| | - Laust Bavnhøj
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus CDK-8000, Denmark
| | - Søren Brag
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus CDK-8000, Denmark
| | - Anastasiia Bohush
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus CDK-8000, Denmark
| | - Adriana Chrenková
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus CDK-8000, Denmark
| | - Jan Heiner Driller
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus CDK-8000, Denmark
| | | |
Collapse
|
2
|
Rioux AV, Nsimba-Batomene TR, Slimani S, Bergeron NAD, Gravel MAM, Schreiber SV, Fiola MJ, Haydock L, Garneau AP, Isenring P. Navigating the multifaceted intricacies of the Na +-Cl - cotransporter, a highly regulated key effector in the control of hydromineral homeostasis. Physiol Rev 2024; 104:1147-1204. [PMID: 38329422 PMCID: PMC11381001 DOI: 10.1152/physrev.00027.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/01/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024] Open
Abstract
The Na+-Cl- cotransporter (NCC; SLC12A3) is a highly regulated integral membrane protein that is known to exist as three splice variants in primates. Its primary role in the kidney is to mediate the cosymport of Na+ and Cl- across the apical membrane of the distal convoluted tubule. Through this role and the involvement of other ion transport systems, NCC allows the systemic circulation to reclaim a fraction of the ultrafiltered Na+, K+, Cl-, and Mg+ loads in exchange for Ca2+ and [Formula: see text]. The physiological relevance of the Na+-Cl- cotransport mechanism in humans is illustrated by several abnormalities that result from NCC inactivation through the administration of thiazides or in the setting of hereditary disorders. The purpose of the present review is to discuss the molecular mechanisms and overall roles of Na+-Cl- cotransport as the main topics of interest. On reading the narrative proposed, one will realize that the knowledge gained in regard to these themes will continue to progress unrelentingly no matter how refined it has now become.
Collapse
Affiliation(s)
- A V Rioux
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - T R Nsimba-Batomene
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - S Slimani
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - N A D Bergeron
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - M A M Gravel
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - S V Schreiber
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - M J Fiola
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - L Haydock
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
- Service de Néphrologie-Transplantation Rénale Adultes, Hôpital Necker-Enfants Malades, AP-HP, INSERM U1151, Université Paris Cité, Paris, France
| | - A P Garneau
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
- Service de Néphrologie-Transplantation Rénale Adultes, Hôpital Necker-Enfants Malades, AP-HP, INSERM U1151, Université Paris Cité, Paris, France
| | - P Isenring
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
3
|
Zhao C, Webster PD, De Angeli A, Tombola F. Mechanically-primed voltage-gated proton channels from angiosperm plants. Nat Commun 2023; 14:7515. [PMID: 37980353 PMCID: PMC10657467 DOI: 10.1038/s41467-023-43280-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/06/2023] [Indexed: 11/20/2023] Open
Abstract
Voltage-gated and mechanically-gated ion channels are distinct classes of membrane proteins that conduct ions across gated pores and are turned on by electrical or mechanical stimuli, respectively. Here, we describe an Hv channel (a.k.a voltage-dependent H+ channel) from the angiosperm plant A. thaliana that gates with a unique modality as it is turned on by an electrical stimulus only after exposure to a mechanical stimulus, a process that we call priming. The channel localizes in the vascular tissue and has homologs in vascular plants. We find that mechanical priming is not required for activation of non-angiosperm Hvs. Guided by AI-generated structural models of plant Hv homologs, we identify a set of residues playing a crucial role in mechanical priming. We propose that Hvs from angiosperm plants require priming because of a network of hydrophilic/charged residues that locks the channels in a silent resting conformation. Mechanical stimuli destabilize the network allowing the conduction pathway to turn on. In contrast to many other channels and receptors, Hv proteins are not thought to possess mechanisms such as inactivation or desensitization. Our findings demonstrate that angiosperm Hv channels are electrically silent until a mechanical stimulation turns on their voltage-dependent activity.
Collapse
Affiliation(s)
- Chang Zhao
- Department of Physiology and Biophysics, University of California, Irvine, CA, 92697, USA
| | - Parker D Webster
- Department of Physiology and Biophysics, University of California, Irvine, CA, 92697, USA
| | - Alexis De Angeli
- IPSiM, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France.
| | - Francesco Tombola
- Department of Physiology and Biophysics, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
4
|
Suades A, Qureshi A, McComas SE, Coinçon M, Rudling A, Chatzikyriakidou Y, Landreh M, Carlsson J, Drew D. Establishing mammalian GLUT kinetics and lipid composition influences in a reconstituted-liposome system. Nat Commun 2023; 14:4070. [PMID: 37429918 DOI: 10.1038/s41467-023-39711-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 06/26/2023] [Indexed: 07/12/2023] Open
Abstract
Glucose transporters (GLUTs) are essential for organism-wide glucose homeostasis in mammals, and their dysfunction is associated with numerous diseases, such as diabetes and cancer. Despite structural advances, transport assays using purified GLUTs have proven to be difficult to implement, hampering deeper mechanistic insights. Here, we have optimized a transport assay in liposomes for the fructose-specific isoform GLUT5. By combining lipidomic analysis with native MS and thermal-shift assays, we replicate the GLUT5 transport activities seen in crude lipids using a small number of synthetic lipids. We conclude that GLUT5 is only active under a specific range of membrane fluidity, and that human GLUT1-4 prefers a similar lipid composition to GLUT5. Although GLUT3 is designated as the high-affinity glucose transporter, in vitro D-glucose kinetics demonstrates that GLUT1 and GLUT3 actually have a similar KM, but GLUT3 has a higher turnover. Interestingly, GLUT4 has a high KM for D-glucose and yet a very slow turnover, which may have evolved to ensure uptake regulation by insulin-dependent trafficking. Overall, we outline a much-needed transport assay for measuring GLUT kinetics and our analysis implies that high-levels of free fatty acid in membranes, as found in those suffering from metabolic disorders, could directly impair glucose uptake.
Collapse
Affiliation(s)
- Albert Suades
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius v. 16c, SE-106 91, Stockholm, Sweden
| | - Aziz Qureshi
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius v. 16c, SE-106 91, Stockholm, Sweden
| | - Sarah E McComas
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius v. 16c, SE-106 91, Stockholm, Sweden
| | - Mathieu Coinçon
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius v. 16c, SE-106 91, Stockholm, Sweden
| | - Axel Rudling
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, SE-751 24, Uppsala, Sweden
| | - Yurie Chatzikyriakidou
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius v. 16c, SE-106 91, Stockholm, Sweden
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, SE-171 65, Solna, Sweden
| | - Jens Carlsson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, SE-751 24, Uppsala, Sweden
| | - David Drew
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius v. 16c, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
5
|
Drew D, North RA, Nagarathinam K, Tanabe M. Structures and General Transport Mechanisms by the Major Facilitator Superfamily (MFS). Chem Rev 2021; 121:5289-5335. [PMID: 33886296 PMCID: PMC8154325 DOI: 10.1021/acs.chemrev.0c00983] [Citation(s) in RCA: 221] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 12/12/2022]
Abstract
The major facilitator superfamily (MFS) is the largest known superfamily of secondary active transporters. MFS transporters are responsible for transporting a broad spectrum of substrates, either down their concentration gradient or uphill using the energy stored in the electrochemical gradients. Over the last 10 years, more than a hundred different MFS transporter structures covering close to 40 members have provided an atomic framework for piecing together the molecular basis of their transport cycles. Here, we summarize the remarkable promiscuity of MFS members in terms of substrate recognition and proton coupling as well as the intricate gating mechanisms undergone in achieving substrate translocation. We outline studies that show how residues far from the substrate binding site can be just as important for fine-tuning substrate recognition and specificity as those residues directly coordinating the substrate, and how a number of MFS transporters have evolved to form unique complexes with chaperone and signaling functions. Through a deeper mechanistic description of glucose (GLUT) transporters and multidrug resistance (MDR) antiporters, we outline novel refinements to the rocker-switch alternating-access model, such as a latch mechanism for proton-coupled monosaccharide transport. We emphasize that a full understanding of transport requires an elucidation of MFS transporter dynamics, energy landscapes, and the determination of how rate transitions are modulated by lipids.
Collapse
Affiliation(s)
- David Drew
- Department
of Biochemistry and Biophysics, Stockholm
University, SE 106 91 Stockholm, Sweden
| | - Rachel A. North
- Department
of Biochemistry and Biophysics, Stockholm
University, SE 106 91 Stockholm, Sweden
| | - Kumar Nagarathinam
- Center
of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Lübeck, D-23538, Lübeck, Germany
| | - Mikio Tanabe
- Structural
Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Oho 1-1, Tsukuba, Ibaraki 305-0801, Japan
| |
Collapse
|
6
|
Marcoux A, Tremblay LE, Slimani S, Fiola M, Mac‐Way F, Garneau AP, Isenring P. Molecular characteristics and physiological roles of Na + -K + -Cl - cotransporter 2. J Cell Physiol 2021; 236:1712-1729. [PMID: 32776569 PMCID: PMC7818487 DOI: 10.1002/jcp.29997] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/28/2020] [Accepted: 07/24/2020] [Indexed: 12/23/2022]
Abstract
Na+ -K+ -Cl- cotransporter 2 (NKCC2; SLC12A1) is an integral membrane protein that comes as three splice variants and mediates the cotranslocation of Na+ , K+ , and Cl- ions through the apical membrane of the thick ascending loop of Henle (TALH). In doing so, and through the involvement of other ion transport systems, it allows this nephron segment to reclaim a large fraction of the ultrafiltered Na+ , Cl- , Ca2+ , Mg2+ , and HCO3- loads. The functional relevance of NKCC2 in human is illustrated by the many abnormalities that result from the inactivation of this transport system through the use of loop diuretics or in the setting of inherited disorders. The following presentation aims at discussing the physiological roles and molecular characteristics of Na+ -K+ -Cl- cotransport in the TALH and those of the individual NKCC2 splice variants more specifically. Many of the historical and recent data that have emerged from the experiments conducted will be outlined and their larger meaning will also be placed into perspective with the aid of various hypotheses.
Collapse
Affiliation(s)
- Andree‐Anne Marcoux
- Department of Medicine, Nephrology Research GroupLaval UniversityQuebec CityQuébecCanada
| | - Laurence E. Tremblay
- Department of Medicine, Nephrology Research GroupLaval UniversityQuebec CityQuébecCanada
| | - Samira Slimani
- Department of Medicine, Nephrology Research GroupLaval UniversityQuebec CityQuébecCanada
| | - Marie‐Jeanne Fiola
- Department of Medicine, Nephrology Research GroupLaval UniversityQuebec CityQuébecCanada
| | - Fabrice Mac‐Way
- Department of Medicine, Nephrology Research GroupLaval UniversityQuebec CityQuébecCanada
| | - Alexandre P. Garneau
- Department of Medicine, Nephrology Research GroupLaval UniversityQuebec CityQuébecCanada
- Cardiometabolic Axis, School of Kinesiology and Physical Activity SciencesUniversity of MontréalMontréalQuebecCanada
| | - Paul Isenring
- Department of Medicine, Nephrology Research GroupLaval UniversityQuebec CityQuébecCanada
| |
Collapse
|
7
|
Schmidl S, Iancu CV, Choe JY, Oreb M. Ligand Screening Systems for Human Glucose Transporters as Tools in Drug Discovery. Front Chem 2018; 6:183. [PMID: 29888221 PMCID: PMC5980966 DOI: 10.3389/fchem.2018.00183] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/07/2018] [Indexed: 12/22/2022] Open
Abstract
Hexoses are the major source of energy and carbon skeletons for biosynthetic processes in all kingdoms of life. Their cellular uptake is mediated by specialized transporters, including glucose transporters (GLUT, SLC2 gene family). Malfunction or altered expression pattern of GLUTs in humans is associated with several widespread diseases including cancer, diabetes and severe metabolic disorders. Their high relevance in the medical area makes these transporters valuable drug targets and potential biomarkers. Nevertheless, the lack of a suitable high-throughput screening system has impeded the determination of compounds that would enable specific manipulation of GLUTs so far. Availability of structural data on several GLUTs enabled in silico ligand screening, though limited by the fact that only two major conformations of the transporters can be tested. Recently, convenient high-throughput microbial and cell-free screening systems have been developed. These remarkable achievements set the foundation for further and detailed elucidation of the molecular mechanisms of glucose transport and will also lead to great progress in the discovery of GLUT effectors as therapeutic agents. In this mini-review, we focus on recent efforts to identify potential GLUT-targeting drugs, based on a combination of structural biology and different assay systems.
Collapse
Affiliation(s)
- Sina Schmidl
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Cristina V Iancu
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Jun-Yong Choe
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Mislav Oreb
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|