1
|
Monje PV. Human Schwann Cells in vitro III. Analytical Methods and a Practical Approach for Quality Control. Bio Protoc 2023; 13:e4840. [PMID: 38034849 PMCID: PMC10682955 DOI: 10.21769/bioprotoc.4840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 12/02/2023] Open
Abstract
This paper introduces simple analytical methods and bioassays to promptly assess the identity and function of in vitro cultured human Schwann cells (hSCs). A systematic approach is proposed to unequivocally discriminate hSCs from other glial cells, non-glial cells, and non-human SCs (authentication), identify hSCs at different stages of differentiation, and determine whether individual hSCs are proliferative or senescent. Examples of how to use distinct cell-based approaches for quality control and routine troubleshooting are provided to confirm the constitution (identity, purity, and heterogeneity) and potency (bioactivity) of hSC cultures from multiple sources. The bioassays are valuable for rapidly gauging the responses of hSCs to mitogenic and differentiating factors and ascertaining the cells' basic properties before performing co-culture or cell grafting studies. The assays are image based and use adherent hSCs established in monoculture to simplify the experimental setup and interpretation of results. Finally, all sections contain thorough background information, notes, and references to facilitate decision making, data interpretation, and ad hoc method development for diverse applications.
Collapse
Affiliation(s)
- Paula V. Monje
- Department of Neurosurgery, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
2
|
Zou Y, Wu S, Wen F, Ge Y, Luo S. PGC-1α Inhibits Schwann Cell Dedifferentiation and Delays Peripheral Nerve Degeneration by Targeting PON1. Cell Mol Neurobiol 2023; 43:3767-3781. [PMID: 37526811 PMCID: PMC11409949 DOI: 10.1007/s10571-023-01395-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023]
Abstract
PPARγ coactivator-1 alpha (PGC-1α) is an essential transcription factor co-activator that regulates gene transcription and neural regeneration. Schwann cells, which are unique glial cells in peripheral nerves that dedifferentiate after peripheral nerve injury (PNI) and are released from degenerative nerves. Wallerian degeneration is a series of stereotypical events that occurs in response to nerve fibers after PNI. The role of PGC-1α in Schwann cell dedifferentiation and Wallerian degeneration is not yet clear. As Wallerian degeneration plays a crucial role in PNI, we conducted a study to determine whether PGC-1α has an effect on peripheral nerve degeneration after injury. We examined the expression of PGC-1α after sciatic nerve crush or transection using Western blotting and found that PGC-1α expression increased after PNI. Then we utilized ex vivo and in vitro models to investigate the effects of PGC-1α inhibition and activation on Schwann cell dedifferentiation and nerve degeneration. Our findings indicate that PGC-1α negatively regulates Schwann cell dedifferentiation and nerve degeneration. Through the use of RNA-seq, siRNA/plasmid transfection and reversal experiments, we identified that PGC-1α targets inhibit the expression of paraoxonase 1 (PON1) during Schwann cell dedifferentiation in degenerated nerves. In summary, PGC-1α plays a crucial role in preventing Schwann cell dedifferentiation and its activation can reduce peripheral nerve degeneration by targeting PON1. PGC-1α inhibits Schwann cell dedifferentiation and peripheral nerve degeneration. PGC-1α negatively regulates Schwann cell dedifferentiation and peripheral nerve degeneration after injury by targeting PON1.
Collapse
Affiliation(s)
- Ying Zou
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Biology, School of Medicine, Jinan University, No. 601, West Huangpu Avenue, Tianhe District, Guangzhou, China.
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, No. 601, West Huangpu Avenue, Tianhe District, Guangzhou, China.
| | - Shu Wu
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, No. 601, West Huangpu Avenue, Tianhe District, Guangzhou, China
| | - Fei Wen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, No. 601, West Huangpu Avenue, Tianhe District, Guangzhou, China
| | - Yuanlong Ge
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, No. 601, West Huangpu Avenue, Tianhe District, Guangzhou, China.
| | - Shengkang Luo
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Biology, School of Medicine, Jinan University, No. 601, West Huangpu Avenue, Tianhe District, Guangzhou, China.
| |
Collapse
|
3
|
SOX10-regulated promoter use defines isoform-specific gene expression in Schwann cells. BMC Genomics 2020; 21:549. [PMID: 32770939 PMCID: PMC7430845 DOI: 10.1186/s12864-020-06963-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/29/2020] [Indexed: 01/12/2023] Open
Abstract
Background Multicellular organisms adopt various strategies to tailor gene expression to cellular contexts including the employment of multiple promoters (and the associated transcription start sites (TSSs)) at a single locus that encodes distinct gene isoforms. Schwann cells—the myelinating cells of the peripheral nervous system (PNS)—exhibit a specialized gene expression profile directed by the transcription factor SOX10, which is essential for PNS myelination. SOX10 regulates promoter elements associated with unique TSSs and gene isoforms at several target loci, implicating SOX10-mediated, isoform-specific gene expression in Schwann cell function. Here, we report on genome-wide efforts to identify SOX10-regulated promoters and TSSs in Schwann cells to prioritize genes and isoforms for further study. Results We performed global TSS analyses and mined previously reported ChIP-seq datasets to assess the activity of SOX10-bound promoters in three models: (i) an adult mammalian nerve; (ii) differentiating primary Schwann cells, and (iii) cultured Schwann cells with ablated SOX10 function. We explored specific characteristics of SOX10-dependent TSSs, which provides confidence in defining them as SOX10 targets. Finally, we performed functional studies to validate our findings at four previously unreported SOX10 target loci: ARPC1A, CHN2, DDR1, and GAS7. These findings suggest roles for the associated SOX10-regulated gene products in PNS myelination. Conclusions In sum, we provide comprehensive computational and functional assessments of SOX10-regulated TSS use in Schwann cells. The data presented in this study will stimulate functional studies on the specific mRNA and protein isoforms that SOX10 regulates, which will improve our understanding of myelination in the peripheral nerve.
Collapse
|
4
|
Huff TC, Camarena V, Sant DW, Wilkes Z, Van Booven D, Aron AT, Muir RK, Renslo AR, Chang CJ, Monje PV, Wang G. Oscillatory cAMP signaling rapidly alters H3K4 methylation. Life Sci Alliance 2019; 3:3/1/e201900529. [PMID: 31882444 PMCID: PMC6935296 DOI: 10.26508/lsa.201900529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 01/02/2023] Open
Abstract
This work explores how GPCR-cAMP signaling dynamically influences histone methylation by altering intracellular labile Fe(II) levels and subsequently modulating histone demethylase activity. Epigenetic variation reflects the impact of a dynamic environment on chromatin. However, it remains elusive how environmental factors influence epigenetic events. Here, we show that G protein–coupled receptors (GPCRs) alter H3K4 methylation via oscillatory intracellular cAMP. Activation of Gs-coupled receptors caused a rapid decrease of H3K4me3 by elevating cAMP, whereas stimulation of Gi-coupled receptors increased H3K4me3 by diminishing cAMP. H3K4me3 gradually recovered towards baseline levels after the removal of GPCR ligands, indicating that H3K4me3 oscillates in tandem with GPCR activation. cAMP increased intracellular labile Fe(II), the cofactor for histone demethylases, through a non-canonical cAMP target—Rap guanine nucleotide exchange factor-2 (RapGEF2), which subsequently enhanced endosome acidification and Fe(II) release from the endosome via vacuolar H+-ATPase assembly. Removing Fe(III) from the media blocked intracellular Fe(II) elevation after stimulation of Gs-coupled receptors. Iron chelators and inhibition of KDM5 demethylases abolished cAMP-mediated H3K4me3 demethylation. Taken together, these results suggest a novel function of cAMP signaling in modulating histone demethylation through labile Fe(II).
Collapse
Affiliation(s)
- Tyler C Huff
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Vladimir Camarena
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - David W Sant
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Zachary Wilkes
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Derek Van Booven
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Allegra T Aron
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Ryan K Muir
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Adam R Renslo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Christopher J Chang
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.,Department of Chemistry, University of California, Berkeley, CA, USA.,Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Paula V Monje
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gaofeng Wang
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA .,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
5
|
Ein L, Bracho O, Mei C, Patel J, Boyle T, Monje P, Fernandez-Valle C, Bas E, Thomas G, Weed D, Sargi Z, Dinh C. Inhibition of tropomyosine receptor kinase B on the migration of human Schwann cell and dispersion of oral tongue squamous cell carcinoma in vitro. Head Neck 2019; 41:4069-4075. [PMID: 31497919 DOI: 10.1002/hed.25956] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/31/2019] [Accepted: 08/26/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Schwann cells (SC) may play an important role in perineural invasion (PNI) by promoting cancer cell dispersion. Brain-derived neurotrophic factor (BDNF) may contribute to these cellular events by activating tropomyosine receptor kinase B (TrkB). This study examines the effect of TrkB inhibition on SC migration and oral cancer cell dispersion in vitro. METHODS Human tongue squamous cell carcinoma (SCC-9) and human SCs were cocultured in three different conditioned mediums: control, BDNF, and TrkB inhibitor. Cell migration, cancer cell dispersion, and SC dedifferentiation were measured on time-lapse and immunofluorescence images. RESULTS Cancer cell migration exceeded SC migration in all conditions. TrkB inhibition promoted SC dedifferentiation and significantly increased SC migration, when compared to BDNF conditions. TrkB inhibition also reduced cancer cell dispersion, when compared to control and BDNF-treated cultures. CONCLUSION SCs may have importance in the pathophysiology of PNI. TrkB inhibition may be a potential avenue for therapeutic intervention.
Collapse
Affiliation(s)
- Liliana Ein
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Olena Bracho
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Christine Mei
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Jaimin Patel
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Thomas Boyle
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Paula Monje
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Cristina Fernandez-Valle
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida
| | - Esperanza Bas
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Giovana Thomas
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Donald Weed
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Zoukaa Sargi
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Christine Dinh
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|