1
|
Takaine M, Morita R, Yoshinari Y, Nishimura T. Phase separation of the PRPP amidotransferase into dynamic condensates promotes de novo purine synthesis in yeast. PLoS Biol 2025; 23:e3003111. [PMID: 40208903 PMCID: PMC12017579 DOI: 10.1371/journal.pbio.3003111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 04/23/2025] [Accepted: 03/12/2025] [Indexed: 04/12/2025] Open
Abstract
De novo purine synthesis (DPS) is up-regulated under conditions of high purine demand to ensure the production of genetic materials and chemical energy, thereby supporting cell proliferation. However, the regulatory mechanisms governing DPS remain unclear. We herein show that PRPP amidotransferase (PPAT), the rate-limiting enzyme in DPS, forms dynamic and motile condensates in Saccharomyces cerevisiae cells under a purine-depleted environment. The formation and maintenance of condensates requires phase separation, which is driven by target of rapamycin complex 1 (TORC1)-induced ribosome biosynthesis. The self-assembly of PPAT molecules facilitates condensate formation, with intracellular PRPP and purine nucleotides both regulating this self-assembly. Moreover, molecular dynamics simulations suggest that clustering-mediated PPAT activation occurs through intermolecular substrate channeling. Cells unable to form PPAT condensates exhibit growth defects, highlighting the physiological importance of condensation. These results indicate that PPAT condensation is an adaptive mechanism that regulates DPS in response to both TORC1 activity and cellular purine demands.
Collapse
Affiliation(s)
- Masak Takaine
- GIAR, Gunma University, Maebashi, Japan
- IMCR, Gunma University, Maebashi, Japan
| | - Rikuri Morita
- Center for Computational Sciences, University of Tsukuba, Ibaraki, Japan
| | - Yuto Yoshinari
- Laboratory of Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Takashi Nishimura
- Laboratory of Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| |
Collapse
|
2
|
Wu D, Yang S, Yuan C, Zhang K, Tan J, Guan K, Zeng H, Huang C. Targeting purine metabolism-related enzymes for therapeutic intervention: A review from molecular mechanism to therapeutic breakthrough. Int J Biol Macromol 2024; 282:136828. [PMID: 39447802 DOI: 10.1016/j.ijbiomac.2024.136828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/02/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Purines are ancient metabolites with established and emerging metabolic and non-metabolic signaling attributes. The expression of purine metabolism-related genes is frequently activated in human malignancies, correlating with increased cancer aggressiveness and chemoresistance. Importantly, under certain stimulating conditions, the purine biosynthetic enzymes can assemble into a metabolon called "purinosomes" to enhance purine flux. Current evidence suggests that purine flux is regulated by a complex circuit that encompasses transcriptional, post-translational, metabolic, and association-dependent regulatory mechanisms. Furthermore, purines within the tumor microenvironment modulate cancer immunity through signaling mediated by purinergic receptors. The deregulation of purine metabolism has significant metabolic consequences, particularly hyperuricemia. Herbal-based therapeutics have emerged as valuable pharmacological interventions for the treatment of hyperuricemia by inhibiting the activity of hepatic XOD, modulating the expression of renal urate transporters, and suppressing inflammatory responses. This review summarizes recent advancements in the understanding of purine metabolism in clinically relevant malignancies and metabolic disorders. Additionally, we discuss the role of herbal interventions and the interaction between the host and gut microbiota in the regulation of purine homeostasis. This information will fuel the innovation of therapeutic strategies that target the disease-associated rewiring of purine metabolism for therapeutic applications.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Shengqiang Yang
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Chenyang Yuan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Jiachen Tan
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China.
| | - Hong Zeng
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise 533000, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| |
Collapse
|
3
|
Abstract
Over the past fifteen years, we have unveiled a new mechanism by which cells achieve greater efficiency in de novo purine biosynthesis. This mechanism relies on the compartmentalization of de novo purine biosynthetic enzymes into a dynamic complex called the purinosome. In this review, we highlight our current understanding of the purinosome with emphasis on its biophysical properties and function and on the cellular mechanisms that regulate its assembly. We propose a model for functional purinosomes in which they consist of at least ten enzymes that localize near mitochondria and carry out de novo purine biosynthesis by metabolic channeling. We conclude by discussing challenges and opportunities associated with studying the purinosome and analogous metabolons. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Anthony M Pedley
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA;
| | - Vidhi Pareek
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA; .,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Stephen J Benkovic
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA;
| |
Collapse
|
4
|
Abstract
I endeavor to share how various choices-some deliberate, some unconscious-and the unmistakable influence of many others shaped my scientific pursuits. I am fascinated by how two long-term, major streams of my research, DNA replication and purine biosynthesis, have merged with unexpected interconnections. If I have imparted to many of the talented individuals who have passed through my lab a degree of my passion for uncloaking the mysteries hidden in scientific research and an understanding of the honesty and rigor it demands and its impact on the world community, then my mentorship has been successful.
Collapse
Affiliation(s)
- Stephen J Benkovic
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA;
| |
Collapse
|
5
|
Folylpoly-ɣ-glutamate synthetase association to the cytoskeleton: Implications to folate metabolon compartmentalization. J Proteomics 2021; 239:104169. [PMID: 33676037 DOI: 10.1016/j.jprot.2021.104169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/03/2021] [Accepted: 02/19/2021] [Indexed: 11/23/2022]
Abstract
Folates are essential for nucleotide biosynthesis, amino acid metabolism and cellular proliferation. Following carrier-mediated uptake, folates are polyglutamylated by folylpoly-ɣ-glutamate synthetase (FPGS), resulting in their intracellular retention. FPGS appears as a long isoform, directed to mitochondria via a leader sequence, and a short isoform reported as a soluble cytosolic protein (cFPGS). However, since folates are labile and folate metabolism is compartmentalized, we herein hypothesized that cFPGS is associated with the cytoskeleton, to couple folate uptake and polyglutamylation and channel folate polyglutamates to metabolon compartments. We show that cFPGS is a cytoskeleton-microtubule associated protein: Western blot analysis revealed that endogenous cFPGS is associated with the insoluble cellular fraction, i.e., cytoskeleton and membranes, but not with the cytosol. Mass spectrometry analysis identified the putative cFPGS interactome primarily consisting of microtubule subunits and cytoskeletal motor proteins. Consistently, immunofluorescence microscopy with cytosol-depleted cells demonstrated the association of cFPGS with the cytoskeleton and unconventional myosin-1c. Furthermore, since anti-microtubule, anti-actin cytoskeleton, and coatomer dissociation-inducing agents yielded perinuclear pausing of cFPGS, we propose an actin- and microtubule-dependent transport of cFPGS between the ER-Golgi and the plasma membrane. These novel findings support the coupling of folate transport with polyglutamylation and folate channeling to intracellular metabolon compartments. SIGNIFICANCE: FPGS, an essential enzyme catalyzing intracellular folate polyglutamylation and efficient retention, was described as a soluble cytosolic enzyme in the past 40 years. However, based on the lability of folates and the compartmentalization of folate metabolism and nucleotide biosynthesis, we herein hypothesized that cytoplasmic FPGS is associated with the cytoskeleton, to couple folate transport and polyglutamylation as well as channel folate polyglutamates to biosynthetic metabolon compartments. Indeed, using complementary techniques including Mass-spectrometry proteomics and fluorescence microscopy, we show that cytoplasmic FPGS is associated with the cytoskeleton and unconventional myosin-1c. This novel cytoskeletal localization of cytoplasmic FPGS supports the dynamic channeling of polyglutamylated folates to metabolon compartments to avoid oxidation and intracellular dilution of folates, while enhancing folate-dependent de novo biosynthesis of nucleotides and DNA/protein methylation.
Collapse
|
6
|
Abstract
The focus of this review is the human de novo purine biosynthetic pathway. The pathway enzymes are enumerated, as well as the reactions they catalyze and their physical properties. Early literature evidence suggested that they might assemble into a multi-enzyme complex called a metabolon. The finding that fluorescently-tagged chimeras of the pathway enzymes form discrete puncta, now called purinosomes, is further elaborated in this review to include: a discussion of their assembly; the role of ancillary proteins; their locus at the microtubule/mitochondria interface; the elucidation that at endogenous levels, purinosomes function to channel intermediates from phosphoribosyl pyrophosphate to AMP and GMP; and the evidence for the purinosomes to exist as a protein condensate. The review concludes with a consideration of probable signaling pathways that might promote the assembly and disassembly of the purinosome, in particular the identification of candidate kinases given the extensive phosphorylation of the enzymes. These collective findings substantiate our current view of the de novo purine biosynthetic metabolon whose properties will be representative of how other metabolic pathways might be organized for their function.
Collapse
Affiliation(s)
- Vidhi Pareek
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Anthony M Pedley
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Stephen J Benkovic
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
7
|
Doigneaux C, Pedley AM, Mistry IN, Papayova M, Benkovic SJ, Tavassoli A. Hypoxia drives the assembly of the multienzyme purinosome complex. J Biol Chem 2020; 295:9551-9566. [PMID: 32439803 PMCID: PMC7363121 DOI: 10.1074/jbc.ra119.012175] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/18/2020] [Indexed: 01/20/2023] Open
Abstract
The purinosome is a dynamic metabolic complex composed of enzymes responsible for de novo purine biosynthesis, whose formation has been associated with elevated purine demand. However, the physiological conditions that govern purinosome formation in cells remain unknown. Here, we report that purinosome formation is up-regulated in cells in response to a low-oxygen microenvironment (hypoxia). We demonstrate that increased purinosome assembly in hypoxic human cells requires the activation of hypoxia inducible factor 1 (HIF-1) and not HIF-2. Hypoxia-driven purinosome assembly was inhibited in cells lacking 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC), a single enzyme in de novo purine biosynthesis, and in cells treated with a small molecule inhibitor of ATIC homodimerization. However, despite the increase in purinosome assembly in hypoxia, we observed no associated increase in de novo purine biosynthesis in cells. Our results indicate that this was likely due to a reduction in mitochondrial one-carbon metabolism, resulting in reduced mitochondrion-derived one-carbon units needed for de novo purine biosynthesis. The findings of our study further clarify and deepen our understanding of purinosome formation by revealing that this process does not solely depend on cellular purine demand.
Collapse
Affiliation(s)
- Cyrielle Doigneaux
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| | - Anthony M Pedley
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Ishna N Mistry
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| | - Monika Papayova
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| | - Stephen J Benkovic
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Ali Tavassoli
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
8
|
Yin J, Ren W, Huang X, Deng J, Li T, Yin Y. Potential Mechanisms Connecting Purine Metabolism and Cancer Therapy. Front Immunol 2018; 9:1697. [PMID: 30105018 PMCID: PMC6077182 DOI: 10.3389/fimmu.2018.01697] [Citation(s) in RCA: 290] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/10/2018] [Indexed: 12/22/2022] Open
Abstract
Unrestricted cell proliferation is a hallmark of cancer. Purines are basic components of nucleotides in cell proliferation, thus impaired purine metabolism is associated with the progression of cancer. The de novo biosynthesis of purine depends on six enzymes to catalyze the conversion of phosphoribosylpyrophosphate to inosine 5'-monophosphate. These enzymes cluster around mitochondria and microtubules to form purinosome, which is a multi-enzyme complex involved in de novo purine biosynthesis and purine nucleotides requirement. In this review, we highlighted the purine metabolism and purinosome biology with emphasis on the therapeutic potential of manipulating of purine metabolism or purinosome in cancers. We also reviewed current advances in our understanding of mammalian target of rapamycin for regulating purinosome formation or purine metabolism in cancers and discussed the future prospects for targeting purinosome to treat cancers.
Collapse
Affiliation(s)
- Jie Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, Institute of Subtropical Animal Nutrition and Feed, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, Institute of Subtropical Animal Nutrition and Feed, South China Agricultural University, Guangzhou, China
| | - Xingguo Huang
- University of Chinese Academy of Sciences, Beijing, China
- Department of Animal Science, Hunan Agriculture University, Changsha, Hunan, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, Institute of Subtropical Animal Nutrition and Feed, South China Agricultural University, Guangzhou, China
| | - Tiejun Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, Institute of Subtropical Animal Nutrition and Feed, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|