1
|
Luo L, Zhou H, Wang S, Pang M, Zhang J, Hu Y, You J. The Application of Nanoparticle-Based Imaging and Phototherapy for Female Reproductive Organs Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2207694. [PMID: 37154216 DOI: 10.1002/smll.202207694] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/06/2023] [Indexed: 05/10/2023]
Abstract
Various female reproductive disorders affect millions of women worldwide and bring many troubles to women's daily life. Let alone, gynecological cancer (such as ovarian cancer and cervical cancer) is a severe threat to most women's lives. Endometriosis, pelvic inflammatory disease, and other chronic diseases-induced pain have significantly harmed women's physical and mental health. Despite recent advances in the female reproductive field, the existing challenges are still enormous such as personalization of disease, difficulty in diagnosing early cancers, antibiotic resistance in infectious diseases, etc. To confront such challenges, nanoparticle-based imaging tools and phototherapies that offer minimally invasive detection and treatment of reproductive tract-associated pathologies are indispensable and innovative. Of late, several clinical trials have also been conducted using nanoparticles for the early detection of female reproductive tract infections and cancers, targeted drug delivery, and cellular therapeutics. However, these nanoparticle trials are still nascent due to the body's delicate and complex female reproductive system. The present review comprehensively focuses on emerging nanoparticle-based imaging and phototherapies applications, which hold enormous promise for improved early diagnosis and effective treatments of various female reproductive organ diseases.
Collapse
Affiliation(s)
- Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Huanli Zhou
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Mei Pang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Yilong Hu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| |
Collapse
|
2
|
Li J, Yi X, Liu L, Wang X, Ai J. Advances in tumor nanotechnology: theragnostic implications in tumors via targeting regulated cell death. Apoptosis 2023:10.1007/s10495-023-01851-3. [PMID: 37184582 DOI: 10.1007/s10495-023-01851-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2023] [Indexed: 05/16/2023]
Abstract
Cell death constitutes an indispensable part of the organismal balance in the human body. Generally, cell death includes regulated cell death (RCD) and accidental cell death (ACD), reflecting the intricately molecule-dependent process and the uncontrolled response, respectively. Furthermore, diverse RCD pathways correlate with multiple diseases, such as tumors and neurodegenerative diseases. Meanwhile, with the development of precision medicine, novel nano-based materials have gradually been applied in the clinical diagnosis and treatment of tumor patients. As the carrier, organic, inorganic, and biomimetic nanomaterials could facilitate the distribution, improve solubility and bioavailability, enhance biocompatibility and decrease the toxicity of drugs in the body, therefore, benefiting tumor patients with better survival outcomes and quality of life. In terms of the most studied cell death pathways, such as apoptosis, necroptosis, and pyroptosis, plenty of studies have explored specific types of nanomaterials targeting the molecules and signals in these pathways. However, no attempt was made to display diverse nanomaterials targeting different RCD pathways comprehensively. In this review, we elaborate on the potential mechanisms of RCD, including intrinsic and extrinsic apoptosis, necroptosis, ferroptosis, pyroptosis, autophagy-dependent cell death, and other cell death pathways together with corresponding nanomaterials. The thorough presentation of RCD pathways and diverse nano-based materials may provide a wider cellular and molecular landscape of tumor diagnosis and treatments.
Collapse
Affiliation(s)
- Jin Li
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Xianyanling Yi
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Liangren Liu
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.
| | - Jianzhong Ai
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Beroske L, Van den Wyngaert T, Stroobants S, Van der Veken P, Elvas F. Molecular Imaging of Apoptosis: The Case of Caspase-3 Radiotracers. Int J Mol Sci 2021; 22:ijms22083948. [PMID: 33920463 PMCID: PMC8069194 DOI: 10.3390/ijms22083948] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/19/2022] Open
Abstract
The molecular imaging of apoptosis remains an important method for the diagnosis and monitoring of the progression of certain diseases and the evaluation of the efficacy of anticancer apoptosis-inducing therapies. Among the multiple biomarkers involved in apoptosis, activated caspase-3 is an attractive target, as it is the most abundant of the executioner caspases. Nuclear imaging is a good candidate, as it combines a high depth of tissue penetration and high sensitivity, features necessary to detect small changes in levels of apoptosis. However, designing a caspase-3 radiotracer comes with challenges, such as selectivity, cell permeability and transient caspase-3 activation. In this review, we discuss the different caspase-3 radiotracers for the imaging of apoptosis together with the challenges of the translation of various apoptosis-imaging strategies in clinical trials.
Collapse
Affiliation(s)
- Lucas Beroske
- Molecular Imaging Center Antwerp, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (T.V.d.W.); (S.S.)
- Department of Nuclear Medicine, Antwerp University Hospital, 2650 Edegem, Belgium
- Laboratory of Medicinal Chemistry, University of Antwerp, 2610 Wilrijk, Belgium;
| | - Tim Van den Wyngaert
- Molecular Imaging Center Antwerp, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (T.V.d.W.); (S.S.)
- Department of Nuclear Medicine, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Sigrid Stroobants
- Molecular Imaging Center Antwerp, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (T.V.d.W.); (S.S.)
- Department of Nuclear Medicine, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Pieter Van der Veken
- Laboratory of Medicinal Chemistry, University of Antwerp, 2610 Wilrijk, Belgium;
| | - Filipe Elvas
- Molecular Imaging Center Antwerp, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (T.V.d.W.); (S.S.)
- Department of Nuclear Medicine, Antwerp University Hospital, 2650 Edegem, Belgium
- Correspondence:
| |
Collapse
|
4
|
Van de Wiele C, Ustmert S, De Spiegeleer B, De Jonghe PJ, Sathekge M, Alex M. Apoptosis Imaging in Oncology by Means of Positron Emission Tomography: A Review. Int J Mol Sci 2021; 22:ijms22052753. [PMID: 33803180 PMCID: PMC7963162 DOI: 10.3390/ijms22052753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/02/2022] Open
Abstract
To date, a wide variety of potential PET-apoptosis imaging radiopharmaceuticals targeting apoptosis-induced cell membrane asymmetry and acidification, as well as caspase 3 activation (substrates and inhibitors) have been developed with the purpose of rapidly assessing the response to treatment in cancer patients. Many of these probes were shown to specifically bind to their apoptotic target in vitro and their uptake to be enhanced in the in vivo-xenografted tumours in mice treated by means of chemotherapy, however, to a significantly variable degree. This may, in part, relate to the tumour model used given the fact that different tumour cell lines bear a different sensitivity to a similar chemotherapeutic agent, to differences in the chemotherapeutic concentration and exposure time, as well as to the different timing of imaging performed post-treatment. The best validated cell membrane acidification and caspase 3 targeting radioligands, respectively 18F-ML-10 from the Aposense family and the radiolabelled caspase 3 substrate 18F-CP18, have also been injected in healthy individuals and shown to bear favourable dosimetric and safety characteristics. However, in contrast to, for instance, the 99mTc-HYNIC-Annexin V, neither of both tracers was taken up to a significant degree by the bone marrow in the healthy individuals under study. Removal of white and red blood cells from the bone marrow through apoptosis plays a major role in the maintenance of hematopoietic cell homeostasis. The major apoptotic population in normal bone marrow are immature erythroblasts. While an accurate estimate of the number of immature erythroblasts undergoing apoptosis is not feasible due to their unknown clearance rate, their number is likely substantial given the ineffective quote of the erythropoietic process described in healthy subjects. Thus, the clinical value of both 18F-ML-10 and 18F-CP18 for apoptosis imaging in cancer patients, as suggested by a small number of subsequent clinical phase I/II trials in patients suffering from primary or secondary brain malignancies using 18F-ML-10 and in an ongoing trial in patients suffering from cancer of the ovaries using 18F-CP18, remains to be proven and warrants further investigation.
Collapse
Affiliation(s)
- Christophe Van de Wiele
- Department of Nuclear Medicine AZ Groeninge, 8500 Kortrijk, Belgium; (S.U.); (P.-J.D.J.); (M.A.)
- Department of Diagnostic Sciences, University Ghent, 9000 Ghent, Belgium
- Correspondence: ; Tel.: +32-5663-4120
| | - Sezgin Ustmert
- Department of Nuclear Medicine AZ Groeninge, 8500 Kortrijk, Belgium; (S.U.); (P.-J.D.J.); (M.A.)
| | - Bart De Spiegeleer
- Department of Analytical Chemistry, DRUQUAR, University Ghent, 9000 Ghent, Belgium;
| | - Pieter-Jan De Jonghe
- Department of Nuclear Medicine AZ Groeninge, 8500 Kortrijk, Belgium; (S.U.); (P.-J.D.J.); (M.A.)
| | - Mike Sathekge
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0084, South Africa;
| | - Maes Alex
- Department of Nuclear Medicine AZ Groeninge, 8500 Kortrijk, Belgium; (S.U.); (P.-J.D.J.); (M.A.)
- Department of Morphology and Imaging, University Leuven, 3000 Leuven, Belgium
| |
Collapse
|
5
|
Abstract
Enzymatic reactions and noncovalent (i.e., supramolecular) interactions are two fundamental nongenetic attributes of life. Enzymatic noncovalent synthesis (ENS) refers to a process where enzymatic reactions control intermolecular noncovalent interactions for spatial organization of higher-order molecular assemblies that exhibit emergent properties and functions. Like enzymatic covalent synthesis (ECS), in which an enzyme catalyzes the formation of covalent bonds to generate individual molecules, ENS is a unifying theme for understanding the functions, morphologies, and locations of molecular ensembles in cellular environments. This review intends to provide a summary of the works of ENS within the past decade and emphasize ENS for functions. After comparing ECS and ENS, we describe a few representative examples where nature uses ENS, as a rule of life, to create the ensembles of biomacromolecules for emergent properties/functions in a myriad of cellular processes. Then, we focus on ENS of man-made (synthetic) molecules in cell-free conditions, classified by the types of enzymes. After that, we introduce the exploration of ENS of man-made molecules in the context of cells by discussing intercellular, peri/intracellular, and subcellular ENS for cell morphogenesis, molecular imaging, cancer therapy, and other applications. Finally, we provide a perspective on the promises of ENS for developing molecular assemblies/processes for functions. This review aims to be an updated introduction for researchers who are interested in exploring noncovalent synthesis for developing molecular science and technologies to address societal needs.
Collapse
Affiliation(s)
- Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Meihui Yi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Adrianna N Shy
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| |
Collapse
|
6
|
Zhang D, Jin Q, Jiang C, Gao M, Ni Y, Zhang J. Imaging Cell Death: Focus on Early Evaluation of Tumor Response to Therapy. Bioconjug Chem 2020; 31:1025-1051. [PMID: 32150392 DOI: 10.1021/acs.bioconjchem.0c00119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cell death plays a prominent role in the treatment of cancer, because most anticancer therapies act by the induction of cell death including apoptosis, necrosis, and other pathways of cell death. Imaging cell death helps to identify treatment responders from nonresponders and thus enables patient-tailored therapy, which will increase the likelihood of treatment response and ultimately lead to improved patient survival. By taking advantage of molecular probes that specifically target the biomarkers/biochemical processes of cell death, cell death imaging can be successfully achieved. In recent years, with the increased understanding of the molecular mechanism of cell death, a variety of well-defined biomarkers/biochemical processes of cell death have been identified. By targeting these established cell death biomarkers/biochemical processes, a set of molecular imaging probes have been developed and evaluated for early monitoring treatment response in tumors. In this review, we mainly present the recent advances in identifying useful biomarkers/biochemical processes for both apoptosis and necrosis imaging and in developing molecular imaging probes targeting these biomarkers/biochemical processes, with a focus on their application in early evaluation of tumor response to therapy.
Collapse
Affiliation(s)
- Dongjian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Qiaomei Jin
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Cuihua Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Meng Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Yicheng Ni
- Theragnostic Laboratory, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| |
Collapse
|
7
|
Vail DM, LeBlanc AK, Jeraj R. Advanced Cancer Imaging Applied in the Comparative Setting. Front Oncol 2020; 10:84. [PMID: 32117739 PMCID: PMC7019008 DOI: 10.3389/fonc.2020.00084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/16/2020] [Indexed: 11/13/2022] Open
Abstract
The potential for companion (pet) species with spontaneously arising tumors to act as surrogates for preclinical development of advanced cancer imaging technologies has become more apparent in the last decade. The utility of the companion model specifically centers around issues related to body size (including spatial target/normal anatomic characteristics), physical size and spatial distribution of metastasis, tumor heterogeneity, the presence of an intact syngeneic immune system and a syngeneic tumor microenvironment shaped by the natural evolution of the cancer. Companion species size allows the use of similar equipment, hardware setup, software, and scan protocols which provide the opportunity for standardization and harmonization of imaging operating procedures and quality assurance across imaging protocols, imaging hardware, and the imaged species. Murine models generally do not replicate the size and spatial distribution of human metastatic cancer and these factors strongly influence image resolution and dosimetry. The following review will discuss several aspects of comparative cancer imaging in more detail while providing several illustrative examples of investigational approaches performed or currently under exploration at our institutions. Topics addressed include a discussion on interested consortia; image quality assurance and harmonization; image-based biomarker development and validation; contrast agent and radionuclide tracer development; advanced imaging to assess and predict response to cytotoxic and immunomodulatory anticancer agents; imaging of the tumor microenvironment; development of novel theranostic approaches; cell trafficking assessment via non-invasive imaging; and intraoperative imaging to inform surgical oncology decision making. Taken in totality, these comparative opportunities predict that safety, diagnostic and efficacy data generated in companion species with naturally developing and progressing cancers would better recapitulate the human cancer condition than that of artificial models in small rodent systems and ultimately accelerate the integration of novel imaging technologies into clinical practice. It is our hope that the examples presented should serve to provide those involved in cancer investigations who are unfamiliar with available comparative methodologies an understanding of the potential utility of this approach.
Collapse
Affiliation(s)
- David M Vail
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States.,Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Amy K LeBlanc
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Robert Jeraj
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States.,Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|