1
|
Ren S, Zhang Z, Song Q, Ren Z, Xiao J, Li L, Zhang Q. Metabolic exploration of the developmental abnormalities and neurotoxicity of Esculentoside B, the main toxic factor in Phytolaccae radix. Food Chem Toxicol 2023; 176:113777. [PMID: 37080526 DOI: 10.1016/j.fct.2023.113777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 04/22/2023]
Abstract
P: radix is a perennial herb, and its extracts have various biological properties that make it a potential candidate for the treatment of tumors, edema, and lymphatic stasis. However, the main factor contributing to its toxicity are not clear. Here, we used a zebrafish toxicological model to study the main toxicity factor of P. radix and explore the potential mechanisms involved. The results revealed that Esculentoside B was the major toxic factor of P. radix. Exposure of zebrafish larvae to Esculentoside B caused developmental abnormalities, neurotoxicity and altered locomotor behavior. The combination of AChE activity and the expression levels of genes relevant to CNS development demonstrated that Esculentoside B is neurotoxic to zebrafish larvae, impairs their CNS development, and that AChE may be a toxic target of Esculentoside B. Metabolomic analysis has revealed that Esculentoside B exposure can disrupt D-Amino acid metabolism, protein export, autophagy, and mTOR signaling pathways in zebrafish larvae. These findings provide insights into the molecular mechanisms underlying EsB-induced neurotoxicity in zebrafish, which can facilitate further research and development of P. radix for safe consumption.
Collapse
Affiliation(s)
- Sipei Ren
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Zhichao Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Qinyang Song
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Zhaoyang Ren
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Jian Xiao
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, China.
| | - Luqi Li
- Life Science Research Core Services, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Qiang Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shanxi, China; Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, China.
| |
Collapse
|
2
|
He L, Wang X, Zheng S. Effects of embryonic propofol exposure on axonal growth and locomotor activity in zebrafish. J Appl Toxicol 2020; 40:855-863. [PMID: 31998977 DOI: 10.1002/jat.3949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 12/19/2022]
Abstract
Prenatal propofol exposure induced neurotoxicity in the developing brains and led to persistent learning deficits in the offspring. Our goal was to use zebrafish to explore whether the decline in learning and memory was correlated with inhibition of neuronal growth after propofol exposure. Zebrafish embryos at 6 hours postfertilization (hpf) were exposed to control or 1, 2 or 4 μg/mL propofol until 48 hpf. Spontaneous locomotor activity and swimming behavior in response to dark-to-light photoperiod stimulation were studied in zebrafish larvae at 6 days postfertilization (dpf). The adaptability to repeated stimulation was used to indicate learning and memory function of larvae. Transgenic NBT line zebrafish was used to quantitate the effect of propofol on motor neuronal growth of embryos in vivo. Six dpf transgenic zebrafish larvae went through photoperiod stimulation after their neuronal length had been analyzed during the embryonic period. Our data indicate that embryonic exposure to 1, 2 and 4 μg/mL propofol had no adverse effect on spontaneous movement in zebrafish larvae, but 2 and 4 μg/mL propofol significantly impaired the learning and memory function of larvae. Moreover, propofol significantly inhibited axonal growth of motor neurons during the embryonic stage, which was correlated with learning and memory deficiency in larvae. Our findings demonstrate that the neuronal growth was correlated with learning and memory function, indicating the relevance of zebrafish as a new model to explore the mechanisms through which propofol induces long-term learning and memory impairment.
Collapse
Affiliation(s)
- Lin He
- Department of Anesthesiology, Children's Hospital of Fudan University, Shanghai, China
| | - Xuan Wang
- Department of Anesthesiology, Children's Hospital of Fudan University, Shanghai, China
| | - Shan Zheng
- Department of Surgery, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|