1
|
Luthi-Carter R, Cappelli S, Le Roux-Bourdieu M, Tentillier N, Quinn JP, Petrozziello T, Gopalakrishnan L, Sethi P, Choudhary H, Bartolini G, Gebara E, Stuani C, Font L, An J, Ortega V, Sage J, Kosa E, Trombetta BA, Simeone R, Seredenina T, Afroz T, Berry JD, Arnold SE, Carlyle BC, Adolfsson O, Sadri-Vakili G, Buratti E, Bowser R, Agbas A. Location and function of TDP-43 in platelets, alterations in neurodegenerative diseases and arising considerations for current plasma biobank protocols. Sci Rep 2024; 14:21837. [PMID: 39294194 PMCID: PMC11410945 DOI: 10.1038/s41598-024-70822-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 08/21/2024] [Indexed: 09/20/2024] Open
Abstract
The TAR DNA Binding Protein 43 (TDP-43) has been implicated in the pathogenesis of human neurodegenerative diseases and exhibits hallmark neuropathology in amyotrophic lateral sclerosis (ALS). Here, we explore its tractability as a plasma biomarker of disease and describe its localization and possible functions in the cytosol of platelets. Novel TDP-43 immunoassays were developed on three different technical platforms and qualified for specificity, signal-to-noise ratio, detection range, variation, spike recovery and dilution linearity in human plasma samples. Surprisingly, implementation of these assays demonstrated that biobank-archived plasma samples yielded considerable heterogeneity in TDP-43 levels. Importantly, subsequent investigation attributed these differences to variable platelet recovery. Fractionations of fresh blood revealed that ≥ 95% of the TDP-43 in platelet-containing plasma was compartmentalized within the platelet cytosol. We reasoned that this highly concentrated source of TDP-43 comprised an interesting substrate for biochemical analyses. Additional characterization of platelets revealed the presence of the disease-associated phosphoserine 409/410 TDP-43 proteoform and many neuron- and astrocyte-expressed TDP-43 mRNA targets. Considering these striking similarities, we propose that TDP-43 may serve analogous functional roles in platelets and synapses, and that the study of platelet TDP-43 might provide a window into disease-related TDP-43 dyshomeostasis in the central nervous system.
Collapse
Affiliation(s)
- Ruth Luthi-Carter
- AC Immune, SA (ACIU), EPFL Innovation Park Building B, 1015, Lausanne, Switzerland.
| | - Sara Cappelli
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy
| | | | - Noemie Tentillier
- AC Immune, SA (ACIU), EPFL Innovation Park Building B, 1015, Lausanne, Switzerland
| | - James P Quinn
- Massachusetts General Hospital Department of Neurology, 114 16th Street, Charlestown, MA, 02129, USA
- Massachusetts Alzheimer's Disease Research Center (ADRC), 114 16th Street, Charlestown, MA, 02129, USA
- MassGeneral Institute for Neurodegenerative Disease, 114 16th Street, Charlestown, MA, 02129, USA
- Eisai US, 35 Cambridgepark Drive, Cambridge, MA, 02140, USA
| | - Tiziana Petrozziello
- Sean M. Healey and AMG Center for ALS at MassGeneral, Massachusetts General Hospital, 165 Cambridge Street, Boston, MA, 02114, USA
| | - Lathika Gopalakrishnan
- Department of Translational Neuroscience, Barrow Neurological Institute, 350 W. Thomas Road, Phoenix, AZ, 85013, USA
| | - Purva Sethi
- Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Himanshi Choudhary
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy
| | - Giorgia Bartolini
- AC Immune, SA (ACIU), EPFL Innovation Park Building B, 1015, Lausanne, Switzerland
| | - Elias Gebara
- AC Immune, SA (ACIU), EPFL Innovation Park Building B, 1015, Lausanne, Switzerland
| | - Cristiana Stuani
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy
| | - Laure Font
- AC Immune, SA (ACIU), EPFL Innovation Park Building B, 1015, Lausanne, Switzerland
| | - Jiyan An
- Department of Translational Neuroscience, Barrow Neurological Institute, 350 W. Thomas Road, Phoenix, AZ, 85013, USA
| | - Vanessa Ortega
- Department of Translational Neuroscience, Barrow Neurological Institute, 350 W. Thomas Road, Phoenix, AZ, 85013, USA
| | - Jessica Sage
- Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
- Boehringer Ingelheim Vetmedica, St Joseph, MO, 64503, USA
| | - Edina Kosa
- Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Bianca A Trombetta
- Massachusetts General Hospital Department of Neurology, 114 16th Street, Charlestown, MA, 02129, USA
- Massachusetts Alzheimer's Disease Research Center (ADRC), 114 16th Street, Charlestown, MA, 02129, USA
| | - Roberto Simeone
- Dipartimento di Medicina Trasfusionale Giuliano-Isontina, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), Trieste, Italy
| | - Tamara Seredenina
- AC Immune, SA (ACIU), EPFL Innovation Park Building B, 1015, Lausanne, Switzerland
| | - Tariq Afroz
- AC Immune, SA (ACIU), EPFL Innovation Park Building B, 1015, Lausanne, Switzerland
| | - James D Berry
- Massachusetts General Hospital Department of Neurology, 114 16th Street, Charlestown, MA, 02129, USA
- Sean M. Healey and AMG Center for ALS at MassGeneral, Massachusetts General Hospital, 165 Cambridge Street, Boston, MA, 02114, USA
- Neurological Clinical Research Institute, 165 Cambridge Street, Boston, MA, 02114, USA
| | - Steven E Arnold
- Massachusetts General Hospital Department of Neurology, 114 16th Street, Charlestown, MA, 02129, USA
- Massachusetts Alzheimer's Disease Research Center (ADRC), 114 16th Street, Charlestown, MA, 02129, USA
- MassGeneral Institute for Neurodegenerative Disease, 114 16th Street, Charlestown, MA, 02129, USA
- Sean M. Healey and AMG Center for ALS at MassGeneral, Massachusetts General Hospital, 165 Cambridge Street, Boston, MA, 02114, USA
| | - Becky C Carlyle
- Massachusetts General Hospital Department of Neurology, 114 16th Street, Charlestown, MA, 02129, USA
- Massachusetts Alzheimer's Disease Research Center (ADRC), 114 16th Street, Charlestown, MA, 02129, USA
- Department of Physiology, Anatomy and Genetics and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX13QU, UK
| | - Oskar Adolfsson
- AC Immune, SA (ACIU), EPFL Innovation Park Building B, 1015, Lausanne, Switzerland
| | - Ghazaleh Sadri-Vakili
- Massachusetts General Hospital Department of Neurology, 114 16th Street, Charlestown, MA, 02129, USA
- MassGeneral Institute for Neurodegenerative Disease, 114 16th Street, Charlestown, MA, 02129, USA
- Sean M. Healey and AMG Center for ALS at MassGeneral, Massachusetts General Hospital, 165 Cambridge Street, Boston, MA, 02114, USA
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy
| | - Robert Bowser
- Department of Translational Neuroscience, Barrow Neurological Institute, 350 W. Thomas Road, Phoenix, AZ, 85013, USA
| | - Abdulbaki Agbas
- Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
| |
Collapse
|
2
|
Pluthero FG, Kahr WHA. Evaluation of human platelet granules by structured illumination laser fluorescence microscopy. Platelets 2023; 34:2157808. [PMID: 36572649 DOI: 10.1080/09537104.2022.2157808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Many roles of human platelets in health and disease are linked to their ability to transport and secrete a variety of small molecules and proteins carried in dense (δ-) and α-granules. Determination of granule number and content is important for diagnosis of platelet disorders and for studies of platelet structure, function, and development. We have optimized methods for detection and localization of platelet proteins via antibody and lectin staining, imaging via structured illumination laser fluorescence microscopy (SIM), and three-dimension (3D) image analysis. The methods were validated via comparison with published studies based on electron microscopy and high-resolution fluorescence microscopy. The α-granule cargo proteins thrombospondin-1 (TSP1), osteonectin (SPARC), fibrinogen (FGN), and Von Willebrand factor (VWF) were localized within the granule lumen, as was the proteoglycan serglycin (SRGN). Colocalization analysis indicates that staining with fluorescently labeled wheat germ agglutinin (WGA) allows detection of α-granules as effectively as immunostaining for cargo proteins, with the advantage of not requiring antibodies. RAB27B was observed to be concentrated at dense granules, allowing them to be counted via visual scoring and object analysis. We present a workflow for counting dense and α-granules via object analysis of 3D SIM images of platelets stained for RAB27B and with WGA.Abbreviation: SIM: structured illumination microscopy; WGA: wheat germ agglutinin; FGN: fibrinogen; TSP1: thrombospondin 1; ER: endoplasmic reticulum.
Collapse
Affiliation(s)
- Fred G Pluthero
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Walter H A Kahr
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Division of Haematology/Oncology, Department of Paediatrics, University of Toronto and The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
4
|
Kelly KL, Reagan WJ, Sonnenberg GE, Clasquin M, Hales K, Asano S, Amor PA, Carvajal-Gonzalez S, Shirai N, Matthews MD, Li KW, Hellerstein MK, Vera NB, Ross TT, Cappon G, Bergman A, Buckeridge C, Sun Z, Qejvanaj EZ, Schmahai T, Beebe D, Pfefferkorn JA, Esler WP. De novo lipogenesis is essential for platelet production in humans. Nat Metab 2020; 2:1163-1178. [PMID: 32929234 DOI: 10.1038/s42255-020-00272-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/06/2020] [Indexed: 02/08/2023]
Abstract
Acetyl-CoA carboxylase (ACC) catalyses the first step of de novo lipogenesis (DNL). Pharmacologic inhibition of ACC has been of interest for therapeutic intervention in a wide range of diseases. We demonstrate here that ACC and DNL are essential for platelet production in humans and monkeys, but in not rodents or dogs. During clinical evaluation of a systemically distributed ACC inhibitor, unexpected dose-dependent reductions in platelet count were observed. While platelet count reductions were not observed in rat and dog toxicology studies, subsequent studies in cynomolgus monkeys recapitulated these platelet count reductions with a similar concentration response to that in humans. These studies, along with ex vivo human megakaryocyte maturation studies, demonstrate that platelet lowering is a consequence of DNL inhibition likely to result in impaired megakaryocyte demarcation membrane formation. These observations demonstrate that while DNL is a minor quantitative contributor to global lipid balance in humans, DNL is essential to specific lipid pools of physiological importance.
Collapse
Affiliation(s)
- Kenneth L Kelly
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - William J Reagan
- Drug Safety Research and Development, Pfizer Inc., Groton, CT, USA
| | - Gabriele E Sonnenberg
- Early Clinical Development, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Michelle Clasquin
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Katherine Hales
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Shoh Asano
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Paul A Amor
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | | | - Norimitsu Shirai
- Drug Safety Research and Development, Pfizer Inc., Groton, CT, USA
| | - Marcy D Matthews
- Department of Nutritional Sciences and Toxicology, University of California at Berkeley, Berkeley, CA, USA
| | - Kelvin W Li
- Department of Nutritional Sciences and Toxicology, University of California at Berkeley, Berkeley, CA, USA
| | - Marc K Hellerstein
- Department of Nutritional Sciences and Toxicology, University of California at Berkeley, Berkeley, CA, USA
| | - Nicholas B Vera
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Trenton T Ross
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Gregg Cappon
- Drug Safety Research and Development, Pfizer Inc., Groton, CT, USA
| | - Arthur Bergman
- Early Clinical Development, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Clare Buckeridge
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Zhongyuan Sun
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Enida Ziso Qejvanaj
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | | | - David Beebe
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Jeffrey A Pfefferkorn
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - William P Esler
- Internal Medicine Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA.
| |
Collapse
|
8
|
Novakowski S, Jiang K, Prakash G, Kastrup C. Delivery of mRNA to platelets using lipid nanoparticles. Sci Rep 2019; 9:552. [PMID: 30679556 PMCID: PMC6345896 DOI: 10.1038/s41598-018-36910-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/27/2018] [Indexed: 01/04/2023] Open
Abstract
Platelets are natural delivery vehicles within the blood, carrying and releasing their contents at sites of vasculature damage. Investigating the biology of platelets, and modifying them for new therapeutic uses, is limited by a lack of methods for efficiently transfecting these cells. The ability of four different classes of lipid nanoparticles (LNPs) to deliver mRNA to platelets was compared using confocal microscopy, flow cytometry and quantitative PCR. The amount of mRNA delivered, mechanism of uptake, and extent of platelet activation depended on the LNP formulation and platelet storage conditions. Cationic LNPs (cLNPs) delivered mRNA to the largest percentage of platelets but induced platelet activation. Ionizable cationic LNPs (icLNPs) delivered mRNA to fewer platelets and did not induce activation. Furthermore, mRNA delivered using icLNPs and cLNPs was stable in resting platelets and was released in platelet microparticles under specific conditions. The results demonstrate that mRNA can be delivered to platelets using cLNPs and icLNPs without impairing platelet aggregation or spreading. Optimizing the LNP formulations used here may lead to a transfection agent for platelets that allows for de novo synthesis of exogenous proteins in the future.
Collapse
Affiliation(s)
- S Novakowski
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - K Jiang
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - G Prakash
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - C Kastrup
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada. .,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|