1
|
Yaron JR, Zhang L, Burgin M, Schutz LN, Awo EA, Keinan S, McFadden G, Ambadapadi S, Guo Q, Chen H, Lucas AR. Deriving Immune-Modulating Peptides from Viral Serine Protease Inhibitors (Serpins). Methods Mol Biol 2021; 2225:107-123. [PMID: 33108660 DOI: 10.1007/978-1-0716-1012-1_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Viruses have devised highly effective approaches that modulate the host immune response, blocking immune responses that are designed to eradicate viral infections. Over millions of years of evolution, virus-derived immune-modulating proteins have become extraordinarily potent, in some cases working at picomolar concentrations when expressed into surrounding tissues and effectively blocking host defenses against viral invasion and replication. The marked efficiency of these immune-modulating proteins is postulated to be due to viral engineering of host immune modulators as well as design and development of new strategies (i.e., some derived from host proteins and some entirely unique). Two key characteristics of viral immune modulators confer both adaptive advantages and desirable functions for therapeutic translation. First, many virus-derived immune modulators have evolved structures that are not readily recognized or regulated by mammalian immune pathways, ensuring little to no neutralizing antibody responses or proteasome-mediated degradation. Second, these immune modulators tend to target early steps in central immune responses, producing a powerful downstream inhibitory "domino effect" which may alter cell activation and gene expression.We have proposed that peptide metabolites of these immune-modulating proteins can enhance and extend protein function. Active immunomodulating peptides have been derived from both mammalian and viral proteins. We previously demonstrated that peptides derived from computationally predicted cleavage sites in the reactive center loop (RCL) of a viral serine proteinase inhibitor (serpin ) from myxoma virus, Serp-1 , can modify immune response activation. We have also demonstrated modulation of host gut microbiota produced by Serp-1 and RCL-derived peptide , S7, in a vascular inflammation model. Of interest, generation of derived peptides that maintain therapeutic function from a serpin can act by a different mechanism. Whereas Serp-1 has canonical serpin-like function to inhibit serine proteases, S7 instead targets mammalian serpins. Here we describe the derivation of active Serp- RCL peptides and their testing in inflammatory vasculitis models.
Collapse
Affiliation(s)
- Jordan R Yaron
- Centers for Personalized Diagnostics and for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Liqiang Zhang
- Centers for Personalized Diagnostics and for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Michelle Burgin
- Centers for Personalized Diagnostics and for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Lauren N Schutz
- Centers for Personalized Diagnostics and for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Enkidia A Awo
- Centers for Personalized Diagnostics and for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | | | - Grant McFadden
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Sriram Ambadapadi
- Centers for Personalized Diagnostics and for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Qiuyun Guo
- Centers for Personalized Diagnostics and for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Chen
- The Department of Tumor Surgery, Second Hospital of Lanzhou University, Lanzhou, China
| | - Alexandra R Lucas
- Centers for Personalized Diagnostics and for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ, USA.
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA.
- St Joseph Hospital, Dignity Health, Creighton University, Phoenix, AZ, USA.
| |
Collapse
|