1
|
de Oliveira Neto NF, Caixeta RAV, Zerbinati RM, Zarpellon AC, Caetano MW, Pallos D, Junges R, Costa ALF, Aitken-Saavedra J, Giannecchini S, Braz-Silva PH. The Emergence of Saliva as a Diagnostic and Prognostic Tool for Viral Infections. Viruses 2024; 16:1759. [PMID: 39599873 PMCID: PMC11599014 DOI: 10.3390/v16111759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Saliva has emerged as a promising diagnostic fluid for viral infections, enabling the direct analysis of viral genetic material and the detection of infection markers such as proteins, metabolites, microRNAs, and immunoglobulins. This comprehensive review aimed to explore the use of saliva as a diagnostic tool for viral infections, emphasizing its advantages and limitations. Saliva stands out due to its simplicity and safety in collection, along with the convenience of self-collection without the need for healthcare supervision, while potentially being comparable to urine and blood in terms of effectiveness. Herein, we highlighted the significant potential of saliva in assessing viral loads and diagnosing viral infections, such as herpesviruses, HPV, PyV, TTV, SARS-CoV-2, and MPXV. The detection of viral shedding in saliva underscores its utility in early diagnosis, the monitoring of infection progression, and evaluating treatment responses. The non-invasive nature of saliva collection makes it an appealing alternative to more invasive methods, promoting better patient compliance and facilitating large-scale screening and surveillance. As such, we further highlight current evidence on the use of saliva as a prognostic tool. Although a significant amount of data is already available, further investigations are warranted to more comprehensively assess the added benefit from the utilization of salivary biomarkers in the clinics. Salivary biomarkers show great promise for the early detection and prevention of viral infection complications, potentially improving disease management and control at the population level. Integrating these non-invasive tools into routine clinical practice could enhance personalized healthcare strategies and patient outcomes. Future studies should focus on establishing standardization protocols, validating the accuracy of salivary diagnostics, and expanding clinical research to enhance the diagnostic and monitoring capabilities of salivary biomarkers.
Collapse
Affiliation(s)
- Nilson Ferreira de Oliveira Neto
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil; (N.F.d.O.N.); (R.A.V.C.); (A.C.Z.); (M.W.C.)
| | - Rafael Antônio Velôso Caixeta
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil; (N.F.d.O.N.); (R.A.V.C.); (A.C.Z.); (M.W.C.)
| | - Rodrigo Melim Zerbinati
- Laboratory of Virology (LIM-52-HCFMUSP), Institute of Tropical Medicine, University of São Paulo School of Medicine, São Paulo 05403-000, Brazil;
| | - Amanda Caroline Zarpellon
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil; (N.F.d.O.N.); (R.A.V.C.); (A.C.Z.); (M.W.C.)
| | - Matheus Willian Caetano
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil; (N.F.d.O.N.); (R.A.V.C.); (A.C.Z.); (M.W.C.)
| | - Debora Pallos
- School of Dentistry, University of Santo Amaro, São Paulo 04743-030, Brazil;
| | - Roger Junges
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, 0316 Oslo, Norway;
| | - André Luiz Ferreira Costa
- Postgraduate Program in Dentistry, Cruzeiro do Sul University (UNICSUL), São Paulo 1506-000, Brazil;
| | - Juan Aitken-Saavedra
- Department of Oral Pathology and Medicine, Faculty of Dentistry, University of Chile, Santiago 3311, Chile;
| | - Simone Giannecchini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Paulo Henrique Braz-Silva
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil; (N.F.d.O.N.); (R.A.V.C.); (A.C.Z.); (M.W.C.)
- Laboratory of Virology (LIM-52-HCFMUSP), Institute of Tropical Medicine, University of São Paulo School of Medicine, São Paulo 05403-000, Brazil;
| |
Collapse
|
2
|
Patiño L, Benítez AD, Carrazco-Montalvo A, Regato-Arrata M. Genomics for Arbovirus Surveillance: Considerations for Routine Use in Public Health Laboratories. Viruses 2024; 16:1242. [PMID: 39205216 PMCID: PMC11360194 DOI: 10.3390/v16081242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
The emergence and re-emergence of arthropod-borne viruses is a public health threat. For routine surveillance in public health laboratories, cost-effective and reproducible methods are essential. In this review, we address the technical considerations of high-throughput sequencing methods (HTS) for arbovirus surveillance in national health laboratories, focusing on pre-sequencing, sequencing, and post-sequencing approaches, underlining the importance of robust wet and dry laboratory workflows for reproducible analysis. We aim to provide insights for researchers and clinicians interested in arbovirus, diagnosis, and surveillance by discussing current advances in sequencing methods and bioinformatics pipelines applied to arboviruses.
Collapse
Affiliation(s)
- Leandro Patiño
- Instituto Nacional de Investigación en Salud Pública “Leopoldo Izquieta Pérez”, Dirección Técnica de Investigación, Desarrollo e Innovación, Guayaquil 090150, Ecuador
- Facultad Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, Guayaquil 090902, Ecuador
| | - Andrea Denisse Benítez
- Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| | - Andrés Carrazco-Montalvo
- Instituto Nacional de Investigación en Salud Pública “Leopoldo Izquieta Pérez”, Centro de Referencia Nacional de Genómica, Secuenciación y Bioinformática, Quito 170403, Ecuador;
| | - Mary Regato-Arrata
- Instituto Nacional de Investigación en Salud Pública “Leopoldo Izquieta Pérez”, Centro de Referencia Nacional de Virus Exantemáticos, Gastroentericos y Transmitidos por Vectores, Guayaquil 090150, Ecuador;
| |
Collapse
|
3
|
Griffith A, Chande C, Kulkarni S, Morel J, Cheng YH, Shimizu E, Cugini C, Basuray S, Kumar V. Point-of-care diagnostic devices for periodontitis - current trends and urgent need. SENSORS & DIAGNOSTICS 2024; 3:1119-1134. [PMID: 39007012 PMCID: PMC11238172 DOI: 10.1039/d3sd00317e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/16/2024] [Indexed: 07/16/2024]
Abstract
Point of care (POC) diagnostic devices provide a method for rapid accurate identification of disease through analysis of biologically relevant substances. This review focuses on the utility of POC testing for early detection of periodontitis, a critical factor in treating the disease. Accessing the oral cavity for biological sampling is less invasive when compared to other internal test sites, and oral fluids contain biomarkers indicative of periodontitis. The ease of access makes the mouth an excellent target location for the development of POC devices. In this review, accepted standards in industry by which these devices must adhere, provided by the World Health Organization such as REASSURED and CLIA, are discussed. An overview is provided for many periodontal biomarkers currently being investigated as a means of predicting periodontal disease and its progression. POC devices currently being investigated for the identification and monitoring of periodontal disease such as paper-based and lab-on-a-chip based devices are outlined. Limitations of current POC devices on the market are provided and future directions in leveraging biomarkers as an adjunctive method for oral diagnosis along with AI-based analysis systems are discussed. Here, we present the ESSENCE sensor platform, which combines a porous non-planar electrode with enhanced shear flow to achieve unprecedented sensitivity and selectivity. The combination of the ESENCE chip with an automated platform allows us to meet the WHO's ASSURED criteria. This platform promises to be an exciting POC candidate for early detection of periodontitis.
Collapse
Affiliation(s)
- Alexandra Griffith
- Department of Biomedical Engineering, New Jersey Institute of Technology Newark NJ 07102 USA
| | - Charmi Chande
- Department of Biomedical Engineering, New Jersey Institute of Technology Newark NJ 07102 USA
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology Newark NJ 07102 USA
| | - Sahitya Kulkarni
- Department of Biological Sciences, New Jersey Institute of Technology Newark NJ 07102 USA
| | - Josuel Morel
- Department of Biomedical Engineering, New Jersey Institute of Technology Newark NJ 07102 USA
| | - Yu-Hsuan Cheng
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology Newark NJ 07102 USA
| | - Emi Shimizu
- Department of Endodontics, Rutgers School of Dental Medicine Newark NJ 07103 USA
- Department of Oral Biology, Rutgers School of Dental Medicine Newark NJ 07103 USA
| | - Carla Cugini
- Department of Oral Biology, Rutgers School of Dental Medicine Newark NJ 07103 USA
| | - Sagnik Basuray
- Department of Biomedical Engineering, New Jersey Institute of Technology Newark NJ 07102 USA
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology Newark NJ 07102 USA
| | - Vivek Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology Newark NJ 07102 USA
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology Newark NJ 07102 USA
- Department of Biological Sciences, New Jersey Institute of Technology Newark NJ 07102 USA
- Department of Endodontics, Rutgers School of Dental Medicine Newark NJ 07103 USA
| |
Collapse
|
4
|
Varzakas T, Antoniadou M. A Holistic Approach for Ethics and Sustainability in the Food Chain: The Gateway to Oral and Systemic Health. Foods 2024; 13:1224. [PMID: 38672896 PMCID: PMC11049237 DOI: 10.3390/foods13081224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Food production is a complex matter, affecting people's lives, organizations' profits, and the well-being of the whole planet, and has multifaceted ethical considerations surrounding its production, distribution, and consumption. This paper addresses the pressing need to confront ethical challenges within the food system, encompassing issues such as environmental sustainability, food security, and individual food choices for better oral and systemic health of all individuals around the globe. From agricultural practices to global trade and food waste, ethical implications are addressed across various domains, highlighting the interconnectedness of ethical decision-making in the food industry. Central themes explored include the ethical dimensions of food production methods, the impact of global trade on food ethics, and the role of individuals in making ethically informed food choices. Additionally, this paper considers the spiritual and physical significance of food, particularly through the lens of oral health as a gateway to holistic well-being. Recognizing the complexity of the food and mouth ecosystem, this paper calls for serious interventions in legislation and economics to promote ethical protocols and techniques for sustainability reasons. It emphasizes the importance of ethical considerations in food safety management systems, regulatory frameworks, and quality standards. Moreover, this paper underlines the need for a comprehensive approach to address ethical dilemmas and moral values inherent in the food industry and oral health policies, adopting the precautionary principle and ethical decision-making frameworks. This article finally aims to serve as a call to action for stakeholders across the food industry and the healthcare sector, to prioritize ethical practices, promote transparency, rearrange economic parameters, and work towards a more sustainable and equitable food system for inner and outer oral and systemic health and human sustainability for all.
Collapse
Affiliation(s)
- Theodoros Varzakas
- Department Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece
| | - Maria Antoniadou
- Department of Dentistry, School of Health Sciences, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Certified Systemic Analyst Program in Systemic Management (CSAP), University of Piraeus, 18534 Piraeus, Greece
| |
Collapse
|
5
|
Brookes Z, Teoh L, Cieplik F, Kumar P. Mouthwash Effects on the Oral Microbiome: Are They Good, Bad, or Balanced? Int Dent J 2023; 73 Suppl 2:S74-S81. [PMID: 37867065 PMCID: PMC10690560 DOI: 10.1016/j.identj.2023.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 10/24/2023] Open
Abstract
This narrative review describes the oral microbiome, and its role in oral health and disease, before considering the impact of commonly used over-the-counter (OTC) mouthwashes on oral bacteria, viruses, bacteriophages, and fungi that make up these microbial communities in different niches of the mouth. Whilst certain mouthwashes have proven antimicrobial actions and clinical effectiveness supported by robust evidence, this review reports more recent metagenomics evidence, suggesting that mouthwashes such as chlorhexidine may cause "dysbiosis," whereby certain species of bacteria are killed, leaving others, sometimes unwanted, to predominate. There is little known about the effects of mouthwashes on fungi and viruses in the context of the oral microbiome (virome) in vivo, despite evidence that they "kill" certain viral pathogens ex vivo. Evidence for mouthwashes, much like antibiotics, is also emerging with regards to antimicrobial resistance, and this should further be considered in the context of their widespread use by clinicians and patients. Therefore, considering the potential of currently available OTC mouthwashes to alter the oral microbiome, this article finally proposes that the ideal mouthwash, whilst combatting oral disease, should "balance" antimicrobial communities, especially those associated with health. Which antimicrobial mouthwash best fits this ideal remains uncertain.
Collapse
Affiliation(s)
- Zoë Brookes
- Peninsula Dental School, Plymouth University, Plymouth, UK.
| | - Leanne Teoh
- Melbourne Dental School, The University of Melbourne, Carlton, Victoria, Australia
| | - Fabian Cieplik
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Purnima Kumar
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, USA
| |
Collapse
|
6
|
Esposito AM, Esposito MM, Ptashnik A. Phylogenetic Diversity of Animal Oral and Gastrointestinal Viromes Useful in Surveillance of Zoonoses. Microorganisms 2022; 10:microorganisms10091815. [PMID: 36144417 PMCID: PMC9506515 DOI: 10.3390/microorganisms10091815] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Great emphasis has been placed on bacterial microbiomes in human and animal systems. In recent years, advances in metagenomics have allowed for the detection and characterization of more and more native viral particles also residing in these organisms. The digestive tracts of animals and humans—from the oral cavity, to the gut, to fecal excretions—have become one such area of interest. Next-generation sequencing and bioinformatic analyses have uncovered vast phylogenetic virome diversity in companion animals, such as dogs and cats, as well as farm animals and wildlife such as bats. Zoonotic and arthropod-borne illnesses remain major causes of worldwide outbreaks, as demonstrated by the devastating COVID-19 pandemic. This highlights the increasing need to identify and study animal viromes to prevent such disastrous cross-species transmission outbreaks in the coming years. Novel viruses have been uncovered in the viromes of multiple organisms, including birds, bats, cats, and dogs. Although the exact consequences for public health have not yet become clear, many analyses have revealed viromes dominated by RNA viruses, which can be the most problematic to human health, as these genomes are known for their high mutation rates and immune system evasion capabilities. Furthermore, in the wake of worldwide disruption from the COVID-19 pandemic, it is evident that proper surveillance of viral biodiversity is crucial. For instance, gut viral metagenomic analysis in dogs has shown close relationships between the highly abundant canine coronavirus and human coronavirus strains 229E and NL63. Future studies and vigilance could potentially save many lives.
Collapse
Affiliation(s)
| | - Michelle Marie Esposito
- Department of Biology, College of Staten Island, City University of New York, Staten Island, NY 10314, USA
- PhD Program in Biology, The Graduate Center, City University of New York, New York, NY 10016, USA
- Correspondence:
| | - Albert Ptashnik
- Department of Biology, College of Staten Island, City University of New York, Staten Island, NY 10314, USA
- PhD Program in Biology, The Graduate Center, City University of New York, New York, NY 10016, USA
- DDS Program, NYU College of Dentistry, New York, NY 10010, USA
| |
Collapse
|
7
|
Smith SE, Huang W, Tiamani K, Unterer M, Khan Mirzaei M, Deng L. Emerging technologies in the study of the virome. Curr Opin Virol 2022; 54:101231. [DOI: 10.1016/j.coviro.2022.101231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 11/03/2022]
|
8
|
Epstein-Barr Virus Genomes Reveal Population Structure and Type 1 Association with Endemic Burkitt Lymphoma. J Virol 2020; 94:JVI.02007-19. [PMID: 32581102 DOI: 10.1128/jvi.02007-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
Endemic Burkitt lymphoma (eBL), the most prevalent pediatric cancer in sub-Saharan Africa, is distinguished by its inclusion of Epstein-Barr virus (EBV). In order to better understand the impact of EBV variation in eBL tumorigenesis, we improved viral DNA enrichment methods and generated a total of 98 new EBV genomes from both eBL cases (n = 58) and healthy controls (n = 40) residing in the same geographic region in Kenya. Using our unbiased methods, we found that EBV type 1 was significantly more prevalent in eBL patients (74.5%) than in healthy children (47.5%) (odds ratio = 3.24, 95% confidence interval = 1.36 to 7.71, P = 0.007), as opposed to similar proportions in both groups. Controlling for EBV type, we also performed a genome-wide association study identifying six nonsynonymous variants in the genes EBNA1, EBNA2, BcLF1, and BARF1 that were enriched in eBL patients. In addition, viruses isolated from plasma of eBL patients were identical to their tumor counterparts consistent with circulating viral DNA originating from the tumor. We also detected three intertypic recombinants carrying type 1 EBNA2 and type 2 EBNA3 regions, as well as one novel genome with a 20-kb deletion, resulting in the loss of multiple lytic and virion genes. Comparing EBV types, viral genes displayed differential variation rates as type 1 appeared to be more divergent, while type 2 demonstrated novel substructures. Overall, our findings highlight the complexities of the EBV population structure and provide new insight into viral variation, potentially deepening our understanding of eBL oncogenesis.IMPORTANCE Improved viral enrichment methods conclusively demonstrate EBV type 1 to be more prevalent in eBL patients than in geographically matched healthy controls, which previously underrepresented the prevalence of EBV type 2. Genome-wide association analysis between cases and controls identifies six eBL-associated nonsynonymous variants in EBNA1, EBNA2, BcLF1, and BARF1 genes. Analysis of population structure reveals that EBV type 2 exists as two genomic subgroups and was more commonly found in female than in male eBL patients.
Collapse
|