1
|
Derippe T, Fouliard S, Decleves X, Mager DE. Quantitative systems pharmacology modeling of tumor heterogeneity in response to BH3-mimetics using virtual tumors calibrated with cell viability assays. CPT Pharmacometrics Syst Pharmacol 2024; 13:1252-1263. [PMID: 38747730 PMCID: PMC11247121 DOI: 10.1002/psp4.13158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/17/2024] [Accepted: 04/24/2024] [Indexed: 07/16/2024] Open
Abstract
Both primary and acquired resistance mechanisms that involve intra-tumoral cell heterogeneity limit the use of BH3-mimetics to trigger tumor cell apoptosis. This article proposes a new quantitative systems pharmacology (QSP)-based methodology in which cell viability assays are used to calibrate virtual tumors (VTs) made of virtual cells whose fate is determined by simulations from an apoptosis QSP model. VTs representing SU-DHL-4 and KARPAS-422 cell lines were calibrated using in vitro data involving venetoclax (anti-BCL2), A-1155463 (anti-BCLXL), and/or A-1210477 (anti-MCL1). The calibrated VTs provide insights into the combination of several BH3-mimetics, such as the distinction between cells eliminated by at least one of the drugs (monotherapies) from the cells eliminated by a pharmacological combination only. Calibrated VTs can also be used as initial conditions in an agent-based model (ABM) framework, and a minimal ABM was developed to bridge in vitro SU-DHL-4 cell viability results to tumor growth inhibition experiments in mice.
Collapse
Affiliation(s)
- Thibaud Derippe
- Institut de Recherches Internationales Servier, Suresnes, France
- Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Paris, France
- Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, New York, USA
| | - Sylvain Fouliard
- Institut de Recherches Internationales Servier, Suresnes, France
| | - Xavier Decleves
- Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Paris, France
| | - Donald E Mager
- Department of Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, New York, USA
- Enhanced Pharmacodynamics, LLC, Buffalo, New York, USA
| |
Collapse
|
2
|
Rich AL, Lin P, Gamazon ER, Zinkel SS. The broad impact of cell death genes on the human disease phenome. Cell Death Dis 2024; 15:251. [PMID: 38589365 PMCID: PMC11002008 DOI: 10.1038/s41419-024-06632-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/09/2024] [Accepted: 03/22/2024] [Indexed: 04/10/2024]
Abstract
Cell death mediated by genetically defined signaling pathways influences the health and dynamics of all tissues, however the tissue specificity of cell death pathways and the relationships between these pathways and human disease are not well understood. We analyzed the expression profiles of an array of 44 cell death genes involved in apoptosis, necroptosis, and pyroptosis cell death pathways across 49 human tissues from GTEx, to elucidate the landscape of cell death gene expression across human tissues, and the relationship between tissue-specific genetically determined expression and the human phenome. We uncovered unique cell death gene expression profiles across tissue types, suggesting there are physiologically distinct cell death programs in different tissues. Using summary statistics-based transcriptome wide association studies (TWAS) on human traits in the UK Biobank (n ~ 500,000), we evaluated 513 traits encompassing ICD-10 defined diagnoses and laboratory-derived traits. Our analysis revealed hundreds of significant (FDR < 0.05) associations between genetically regulated cell death gene expression and an array of human phenotypes encompassing both clinical diagnoses and hematologic parameters, which were independently validated in another large-scale DNA biobank (BioVU) at Vanderbilt University Medical Center (n = 94,474) with matching phenotypes. Cell death genes were highly enriched for significant associations with blood traits versus non-cell-death genes, with apoptosis-associated genes enriched for leukocyte and platelet traits. Our findings are also concordant with independently published studies (e.g. associations between BCL2L11/BIM expression and platelet & lymphocyte counts). Overall, these results suggest that cell death genes play distinct roles in their contribution to human phenotypes, and that cell death genes influence a diverse array of human traits.
Collapse
Affiliation(s)
- Abigail L Rich
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Phillip Lin
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric R Gamazon
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Sandra S Zinkel
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
3
|
Rich A, Lin P, Gamazon E, Zinkel S. The broad impact of cell death genes on the human disease phenome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.11.23291256. [PMID: 37398182 PMCID: PMC10312822 DOI: 10.1101/2023.06.11.23291256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Apoptotic, necroptotic, and pyroptotic cell death pathways are attractive and druggable targets for many human diseases, however the tissue specificity of these pathways and the relationship between these pathways and human disease is poorly characterized. Understanding the impact of modulating cell death gene expression on the human phenome could inform clinical investigation of cell death pathway-modulating therapeutics in human disorders by identifying novel trait associations and by detecting tissue-specific side effect profiles. We analyzed the expression profiles of an array of 44 cell death genes across somatic tissues in GTEx v8 and investigated the relationship between tissue-specific genetically determined expression of 44 cell death genes and the human phenome using summary statistics-based transcriptome wide association studies (TWAS) on human traits in the UK Biobank V3 (n ~500,000). We evaluated 513 traits encompassing ICD-10 defined diagnoses and hematologic traits (blood count labs). Our analysis revealed hundreds of significant (FDR<0.05) associations between cell death gene expression and diverse human phenotypes, which were independently validated in another large-scale biobank. Cell death genes were highly enriched for significant associations with blood traits versus non-cell-death genes, with apoptosis-associated genes enriched for leukocyte and platelet traits and necroptosis gene associations enriched for erythroid traits (e.g., Reticulocyte count, FDR=0.004). This suggests that immunogenic cell death pathways play an important role in regulating erythropoiesis and reinforces the paradigm that apoptosis pathway genes are critical for white blood cell and platelet development. Of functionally analogous genes, for instance pro-survival BCL2 family members, trait/direction-of-effect relationships were heterogeneous across blood traits. Overall, these results suggest that even functionally similar and/or orthologous cell death genes play distinct roles in their contribution to human phenotypes, and that cell death genes influence a diverse array of human traits.
Collapse
Affiliation(s)
- Abigail Rich
- Molecular Pathology & Immunology Graduate Program, Vanderbilt University
| | - Phillip Lin
- Department of Medicine, Vanderbilt University Medical Center
| | - Eric Gamazon
- Department of Medicine, Vanderbilt University Medical Center
| | - Sandra Zinkel
- Department of Medicine, Vanderbilt University Medical Center
| |
Collapse
|
4
|
Solanes Vilanova F, Hellebuyck T, Chiers K. Histological Variants of Squamous and Basal Cell Carcinoma in Squamates and Chelonians: A Comprehensive Classification. Animals (Basel) 2023; 13:ani13081327. [PMID: 37106890 PMCID: PMC10135371 DOI: 10.3390/ani13081327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
In the present study, the histological characteristics of squamous cell carcinomas (SCCs) and basal cell carcinomas (BCCs) obtained from 22 squamate and 13 chelonian species were retrospectively evaluated. While the examined tissues were originally diagnosed as 28 SCCs and 7 BCCs based on histological evaluation by a specialty diagnostic service, eight SCCs could be re-classified as BCCs and three SCCs proved to be non-neoplastic lesions. In addition, all SCCs and BCCs were classified into distinct histological variants. The SCCs could be categorized as one SCC in situ, three moderately differentiated SCCs, seven well-differentiated SCCs, and six keratoacanthomas. BCCs were classified as five solid BCCs, four infiltrating BCCs, five keratotic BCCs, and one basosquamous cell carcinoma. In addition, the present study reports the occurrence of BCCs in seven reptile species for the first time. In contrast to what has been documented in humans, IHC staining with the commercially available epithelial membrane antigen and epithelial antigen clone Ber-EP4 does not allow differentiation of SCCs from BCCs in reptiles, while cyclooxygenase-2 and E-cadherin staining seem to have discriminating potential. Although the gross pathological features of the examined SCCs and BCCs were highly similar, each tumor could be unequivocally assigned to a distinct histological variant according to the observed histological characteristics. Based on the results of this study, a histopathological classification for SCCs and BCCs is proposed, allowing accurate identification and differentiation of SCCs and BCCs and their histological variants in the examined reptile species. Presumably, BCCs are severely underdiagnosed in squamates and chelonians.
Collapse
Affiliation(s)
- Ferran Solanes Vilanova
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Tom Hellebuyck
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Koen Chiers
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| |
Collapse
|
5
|
Ikegawa Y, Combet C, Groussin M, Navratil V, Safar-Remali S, Shiota T, Aouacheria A, Yoo SK. Evidence for existence of an apoptosis-inducing BH3-only protein, sayonara, in Drosophila. EMBO J 2023; 42:e110454. [PMID: 36727601 PMCID: PMC10107002 DOI: 10.15252/embj.2021110454] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 02/03/2023] Open
Abstract
Cells need to sense stresses to initiate the execution of the dormant cell death program. Since the discovery of the first BH3-only protein Bad, BH3-only proteins have been recognized as indispensable stress sensors that induce apoptosis. BH3-only proteins have so far not been identified in Drosophila despite their importance in other organisms. Here, we identify the first Drosophila BH3-only protein and name it sayonara. Sayonara induces apoptosis in a BH3 motif-dependent manner and interacts genetically and biochemically with the BCL-2 homologous proteins, Buffy and Debcl. There is a positive feedback loop between Sayonara-mediated caspase activation and autophagy. The BH3 motif of sayonara phylogenetically appeared at the time of the ancestral gene duplication that led to the formation of Buffy and Debcl in the dipteran lineage. To our knowledge, this is the first identification of a bona fide BH3-only protein in Drosophila, thus providing a unique example of how cell death mechanisms can evolve both through time and across taxa.
Collapse
Affiliation(s)
- Yuko Ikegawa
- Laboratory for Homeodynamics, RIKEN BDR, Kobe, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Christophe Combet
- Centre de Recherche en Cancérologie de Lyon, UMR Inserm U1052, CNRS 5286, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| | - Mathieu Groussin
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Villeurbanne, France.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Vincent Navratil
- PRABI, Rhône-Alpes Bioinformatics Center, Université Lyon 1, Villeurbanne, France.,UMS 3601, Institut Français de Bioinformatique, IFB-Core, Évry, France
| | - Sabrina Safar-Remali
- Centre de Recherche en Cancérologie de Lyon, UMR Inserm U1052, CNRS 5286, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| | - Takuya Shiota
- Organization for Promotion of Tenure Track, University of Miyazaki, Miyazaki, Japan.,Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| | - Abdel Aouacheria
- ISEM, Institut des Sciences de l'Evolution de Montpellier, UMR 5554, CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
| | - Sa Kan Yoo
- Laboratory for Homeodynamics, RIKEN BDR, Kobe, Japan.,Physiological Genetics Laboratory, RIKEN CPR, Kobe, Japan
| |
Collapse
|
6
|
Kønig SM, Rissler V, Terkelsen T, Lambrughi M, Papaleo E. Alterations of the interactome of Bcl-2 proteins in breast cancer at the transcriptional, mutational and structural level. PLoS Comput Biol 2019; 15:e1007485. [PMID: 31825969 PMCID: PMC6927658 DOI: 10.1371/journal.pcbi.1007485] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/23/2019] [Accepted: 10/12/2019] [Indexed: 12/11/2022] Open
Abstract
Apoptosis is an essential defensive mechanism against tumorigenesis. Proteins of the B-cell lymphoma-2 (Bcl-2) family regulate programmed cell death by the mitochondrial apoptosis pathway. In response to intracellular stress, the apoptotic balance is governed by interactions of three distinct subgroups of proteins; the activator/sensitizer BH3 (Bcl-2 homology 3)-only proteins, the pro-survival, and the pro-apoptotic executioner proteins. Changes in expression levels, stability, and functional impairment of pro-survival proteins can lead to an imbalance in tissue homeostasis. Their overexpression or hyperactivation can result in oncogenic effects. Pro-survival Bcl-2 family members carry out their function by binding the BH3 short linear motif of pro-apoptotic proteins in a modular way, creating a complex network of protein-protein interactions. Their dysfunction enables cancer cells to evade cell death. The critical role of Bcl-2 proteins in homeostasis and tumorigenesis, coupled with mounting insight in their structural properties, make them therapeutic targets of interest. A better understanding of gene expression, mutational profile, and molecular mechanisms of pro-survival Bcl-2 proteins in different cancer types, could help to clarify their role in cancer development and may guide advancement in drug discovery. Here, we shed light on the pro-survival Bcl-2 proteins in breast cancer using different bioinformatic approaches, linking -omics with structural data. We analyzed the changes in the expression of the Bcl-2 proteins and their BH3-containing interactors in breast cancer samples. We then studied, at the structural level, a selection of interactions, accounting for effects induced by mutations found in the breast cancer samples. We find two complexes between the up-regulated Bcl2A1 and two down-regulated BH3-only candidates (i.e., Hrk and Nr4a1) as targets associated with reduced apoptosis in breast cancer samples for future experimental validation. Furthermore, we predict L99R, M75R as damaging mutations altering protein stability, and Y120C as a possible allosteric mutation from an exposed surface to the BH3-binding site.
Collapse
Affiliation(s)
- Simon Mathis Kønig
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Vendela Rissler
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Thilde Terkelsen
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Matteo Lambrughi
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Elena Papaleo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
- Translational Disease Systems Biology, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|