1
|
Shin D, Cho KH. Critical transition and reversion of tumorigenesis. Exp Mol Med 2023; 55:692-705. [PMID: 37009794 PMCID: PMC10167317 DOI: 10.1038/s12276-023-00969-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 04/04/2023] Open
Abstract
Cancer is caused by the accumulation of genetic alterations and therefore has been historically considered to be irreversible. Intriguingly, several studies have reported that cancer cells can be reversed to be normal cells under certain circumstances. Despite these experimental observations, conceptual and theoretical frameworks that explain these phenomena and enable their exploration in a systematic way are lacking. In this review, we provide an overview of cancer reversion studies and describe recent advancements in systems biological approaches based on attractor landscape analysis. We suggest that the critical transition in tumorigenesis is an important clue for achieving cancer reversion. During tumorigenesis, a critical transition may occur at a tipping point, where cells undergo abrupt changes and reach a new equilibrium state that is determined by complex intracellular regulatory events. We introduce a conceptual framework based on attractor landscapes through which we can investigate the critical transition in tumorigenesis and induce its reversion by combining intracellular molecular perturbation and extracellular signaling controls. Finally, we present a cancer reversion therapy approach that may be a paradigm-changing alternative to current cancer cell-killing therapies.
Collapse
Affiliation(s)
- Dongkwan Shin
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Reasearch Institute, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Kwang-Hyun Cho
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
2
|
Subramanian A, Zakeri P, Mousa M, Alnaqbi H, Alshamsi FY, Bettoni L, Damiani E, Alsafar H, Saeys Y, Carmeliet P. Angiogenesis goes computational - The future way forward to discover new angiogenic targets? Comput Struct Biotechnol J 2022; 20:5235-5255. [PMID: 36187917 PMCID: PMC9508490 DOI: 10.1016/j.csbj.2022.09.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/26/2022] Open
Abstract
Multi-omics technologies are being increasingly utilized in angiogenesis research. Yet, computational methods have not been widely used for angiogenic target discovery and prioritization in this field, partly because (wet-lab) vascular biologists are insufficiently familiar with computational biology tools and the opportunities they may offer. With this review, written for vascular biologists who lack expertise in computational methods, we aspire to break boundaries between both fields and to illustrate the potential of these tools for future angiogenic target discovery. We provide a comprehensive survey of currently available computational approaches that may be useful in prioritizing candidate genes, predicting associated mechanisms, and identifying their specificity to endothelial cell subtypes. We specifically highlight tools that use flexible, machine learning frameworks for large-scale data integration and gene prioritization. For each purpose-oriented category of tools, we describe underlying conceptual principles, highlight interesting applications and discuss limitations. Finally, we will discuss challenges and recommend some guidelines which can help to optimize the process of accurate target discovery.
Collapse
Affiliation(s)
- Abhishek Subramanian
- Laboratory of Angiogenesis & Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Angiogenesis & Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Pooya Zakeri
- Laboratory of Angiogenesis & Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Mira Mousa
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Halima Alnaqbi
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Fatima Yousif Alshamsi
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Leo Bettoni
- Laboratory of Angiogenesis & Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Angiogenesis & Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Ernesto Damiani
- Robotics and Intelligent Systems Institute, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Habiba Alsafar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Yvan Saeys
- Data Mining and Modelling for Biomedicine Group, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis & Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Angiogenesis & Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis & Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
3
|
Ding J, Sharon N, Bar-Joseph Z. Temporal modelling using single-cell transcriptomics. Nat Rev Genet 2022; 23:355-368. [PMID: 35102309 DOI: 10.1038/s41576-021-00444-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 12/16/2022]
Abstract
Methods for profiling genes at the single-cell level have revolutionized our ability to study several biological processes and systems including development, differentiation, response programmes and disease progression. In many of these studies, cells are profiled over time in order to infer dynamic changes in cell states and types, sets of expressed genes, active pathways and key regulators. However, time-series single-cell RNA sequencing (scRNA-seq) also raises several new analysis and modelling issues. These issues range from determining when and how deep to profile cells, linking cells within and between time points, learning continuous trajectories, and integrating bulk and single-cell data for reconstructing models of dynamic networks. In this Review, we discuss several approaches for the analysis and modelling of time-series scRNA-seq, highlighting their steps, key assumptions, and the types of data and biological questions they are most appropriate for.
Collapse
|
4
|
Peterson JC, Kelder TP, Goumans MJTH, Jongbloed MRM, DeRuiter MC. The Role of Cell Tracing and Fate Mapping Experiments in Cardiac Outflow Tract Development, New Opportunities through Emerging Technologies. J Cardiovasc Dev Dis 2021; 8:47. [PMID: 33925811 PMCID: PMC8146276 DOI: 10.3390/jcdd8050047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
Whilst knowledge regarding the pathophysiology of congenital heart disease (CHDs) has advanced greatly in recent years, the underlying developmental processes affecting the cardiac outflow tract (OFT) such as bicuspid aortic valve, tetralogy of Fallot and transposition of the great arteries remain poorly understood. Common among CHDs affecting the OFT, is a large variation in disease phenotypes. Even though the different cell lineages contributing to OFT development have been studied for many decades, it remains challenging to relate cell lineage dynamics to the morphologic variation observed in OFT pathologies. We postulate that the variation observed in cellular contribution in these congenital heart diseases might be related to underlying cell lineage dynamics of which little is known. We believe this gap in knowledge is mainly the result of technical limitations in experimental methods used for cell lineage analysis. The aim of this review is to provide an overview of historical fate mapping and cell tracing techniques used to study OFT development and introduce emerging technologies which provide new opportunities that will aid our understanding of the cellular dynamics underlying OFT pathology.
Collapse
Affiliation(s)
- Joshua C. Peterson
- Department Anatomy & Embryology, Leiden University Medical Center, 2300RC Leiden, The Netherlands; (J.C.P.); (T.P.K.); (M.R.M.J.)
| | - Tim P. Kelder
- Department Anatomy & Embryology, Leiden University Medical Center, 2300RC Leiden, The Netherlands; (J.C.P.); (T.P.K.); (M.R.M.J.)
| | - Marie José T. H. Goumans
- Department Cellular and Chemical Biology, Leiden University Medical Center, 2300RC Leiden, The Netherlands;
| | - Monique R. M. Jongbloed
- Department Anatomy & Embryology, Leiden University Medical Center, 2300RC Leiden, The Netherlands; (J.C.P.); (T.P.K.); (M.R.M.J.)
- Department of Cardiology, Leiden University Medical Center, 2300RC Leiden, The Netherlands
| | - Marco C. DeRuiter
- Department Anatomy & Embryology, Leiden University Medical Center, 2300RC Leiden, The Netherlands; (J.C.P.); (T.P.K.); (M.R.M.J.)
| |
Collapse
|
5
|
Kumar N, Mishra B, Athar M, Mukhtar S. Inference of Gene Regulatory Network from Single-Cell Transcriptomic Data Using pySCENIC. Methods Mol Biol 2021; 2328:171-182. [PMID: 34251625 DOI: 10.1007/978-1-0716-1534-8_10] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
With the advent of recent next-generation sequencing (NGS) technologies in genomics, transcriptomics, and epigenomics, profiling single-cell sequencing became possible. The single-cell RNA sequencing (scRNA-seq) is widely used to characterize diverse cell populations and ascertain cell type-specific regulatory mechanisms. The gene regulatory network (GRN) mainly consists of genes and their regulators-transcription factors (TF). Here, we describe the lightning-fast Python implementation of the SCENIC (Single-Cell reEgulatory Network Inference and Clustering) pipeline called pySCENIC. Using single-cell RNA-seq data, it maps TFs onto gene regulatory networks and integrates various cell types to infer cell-specific GRNs. There are two fast and efficient GRN inference algorithms, GRNBoost2 and GENIE3, optionally available with pySCENIC. The pipeline has three steps: (1) identification of potential TF targets based on co-expression; (2) TF-motif enrichment analysis to identify the direct targets (regulons); and (3) scoring the activity of regulons (or other gene sets) on single cell types.
Collapse
Affiliation(s)
- Nilesh Kumar
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bharat Mishra
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mohammad Athar
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
6
|
Osorio D, Zhong Y, Li G, Huang JZ, Cai JJ. scTenifoldNet: A Machine Learning Workflow for Constructing and Comparing Transcriptome-wide Gene Regulatory Networks from Single-Cell Data. PATTERNS (NEW YORK, N.Y.) 2020; 1:100139. [PMID: 33336197 PMCID: PMC7733883 DOI: 10.1016/j.patter.2020.100139] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 02/02/2023]
Abstract
We present scTenifoldNet-a machine learning workflow built upon principal-component regression, low-rank tensor approximation, and manifold alignment-for constructing and comparing single-cell gene regulatory networks (scGRNs) using data from single-cell RNA sequencing. scTenifoldNet reveals regulatory changes in gene expression between samples by comparing the constructed scGRNs. With real data, scTenifoldNet identifies specific gene expression programs associated with different biological processes, providing critical insights into the underlying mechanism of regulatory networks governing cellular transcriptional activities.
Collapse
Affiliation(s)
- Daniel Osorio
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Yan Zhong
- Department of Statistics, Texas A&M University, College Station, TX 77843, USA
| | - Guanxun Li
- Department of Statistics, Texas A&M University, College Station, TX 77843, USA
| | - Jianhua Z. Huang
- Department of Statistics, Texas A&M University, College Station, TX 77843, USA
| | - James J. Cai
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
- Interdisciplinary Program of Genetics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
7
|
Improved detection of tumor suppressor events in single-cell RNA-Seq data. NPJ Genom Med 2020; 5:43. [PMID: 33083012 PMCID: PMC7541488 DOI: 10.1038/s41525-020-00151-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/21/2020] [Indexed: 12/17/2022] Open
Abstract
Tissue-specific transcription factors are frequently inactivated in cancer. To fully dissect the heterogeneity of such tumor suppressor events requires single-cell resolution, yet this is challenging because of the high dropout rate. Here we propose a simple yet effective computational strategy called SCIRA to infer regulatory activity of tissue-specific transcription factors at single-cell resolution and use this tool to identify tumor suppressor events in single-cell RNA-Seq cancer studies. We demonstrate that tissue-specific transcription factors are preferentially inactivated in the corresponding cancer cells, suggesting that these are driver events. For many known or suspected tumor suppressors, SCIRA predicts inactivation in single cancer cells where differential expression does not, indicating that SCIRA improves the sensitivity to detect changes in regulatory activity. We identify NKX2-1 and TBX4 inactivation as early tumor suppressor events in normal non-ciliated lung epithelial cells from smokers. In summary, SCIRA can help chart the heterogeneity of tumor suppressor events at single-cell resolution.
Collapse
|
8
|
Charrout M, Reinders MJT, Mahfouz A. Untangling biological factors influencing trajectory inference from single cell data. NAR Genom Bioinform 2020; 2:lqaa053. [PMID: 33575604 PMCID: PMC7671373 DOI: 10.1093/nargab/lqaa053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/17/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
Advances in single-cell RNA sequencing over the past decade has shifted the discussion of cell identity toward the transcriptional state of the cell. While the incredible resolution provided by single-cell RNA sequencing has led to great advances in unraveling tissue heterogeneity and inferring cell differentiation dynamics, it raises the question of which sources of variation are important for determining cellular identity. Here we show that confounding biological sources of variation, most notably the cell cycle, can distort the inference of differentiation trajectories. We show that by factorizing single cell data into distinct sources of variation, we can select a relevant set of factors that constitute the core regulators for trajectory inference, while filtering out confounding sources of variation (e.g. cell cycle) which can perturb the inferred trajectory. Script are available publicly on https://github.com/mochar/cell_variation.
Collapse
Affiliation(s)
- Mohammed Charrout
- Delft Bioinformatics Lab, Delft University of Technology, Delft 2628 XE, The Netherlands
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands
| | - Marcel J T Reinders
- Delft Bioinformatics Lab, Delft University of Technology, Delft 2628 XE, The Netherlands
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands
| | - Ahmed Mahfouz
- Delft Bioinformatics Lab, Delft University of Technology, Delft 2628 XE, The Netherlands
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands
| |
Collapse
|
9
|
Zheng X, Huang Y, Zou X. scPADGRN: A preconditioned ADMM approach for reconstructing dynamic gene regulatory network using single-cell RNA sequencing data. PLoS Comput Biol 2020; 16:e1007471. [PMID: 32716923 PMCID: PMC7410337 DOI: 10.1371/journal.pcbi.1007471] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 08/06/2020] [Accepted: 05/28/2020] [Indexed: 12/23/2022] Open
Abstract
Disease development and cell differentiation both involve dynamic changes; therefore, the reconstruction of dynamic gene regulatory networks (DGRNs) is an important but difficult problem in systems biology. With recent technical advances in single-cell RNA sequencing (scRNA-seq), large volumes of scRNA-seq data are being obtained for various processes. However, most current methods of inferring DGRNs from bulk samples may not be suitable for scRNA-seq data. In this work, we present scPADGRN, a novel DGRN inference method using “time-series” scRNA-seq data. scPADGRN combines the preconditioned alternating direction method of multipliers with cell clustering for DGRN reconstruction. It exhibits advantages in accuracy, robustness and fast convergence. Moreover, a quantitative index called Differentiation Genes’ Interaction Enrichment (DGIE) is presented to quantify the interaction enrichment of genes related to differentiation. From the DGIE scores of relevant subnetworks, we infer that the functions of embryonic stem (ES) cells are most active initially and may gradually fade over time. The communication strength of known contributing genes that facilitate cell differentiation increases from ES cells to terminally differentiated cells. We also identify several genes responsible for the changes in the DGIE scores occurring during cell differentiation based on three real single-cell datasets. Our results demonstrate that single-cell analyses based on network inference coupled with quantitative computations can reveal key transcriptional regulators involved in cell differentiation and disease development. Single-cell RNA sequencing (scRNA-seq) data are gaining popularity for providing access to cell-level measurements. Currently, time-series scRNA-seq data allow researchers to study dynamic changes during biological processes. This work proposes a novel method, scPADGRN, for application to time-series scRNA-seq data to construct dynamic gene regulatory networks, which are informative for investigating dynamic changes during disease development and cell differentiation. The proposed method shows satisfactory performance on both simulated data and three real datasets concerning cell differentiation. To quantify network dynamics, we present a quantitative index, DGIE, to measure the degree of activity of a certain set of genes in a regulatory network. Quantitative computations based on dynamic networks identify key regulators in cell differentiation and reveal the activity states of the identified regulators. Specifically, Bhlhe40, Msx2, Foxa2 and Dnmt3l might be important regulatory genes involved in differentiation from mouse ES cells to primitive endoderm (PrE) cells. For differentiation from mouse embryonic fibroblast cells to myocytes, Scx, Fos and Tcf12 are suggested to be key regulators. Sox5, Meis2, Hoxb3, Tcf7l1 and Plagl1 critically contribute during differentiation from human ES cells to definitive endoderm cells. These results may guide further theoretical and experimental efforts to understand cell differentiation processes and explore cell heterogeneity.
Collapse
Affiliation(s)
- Xiao Zheng
- School of Mathematics and Statistics, Wuhan University, Wuhan, Hubei, China
| | - Yuan Huang
- Department of Biostatistics, Yale University, New Haven, Connecticut, United States of America
| | - Xiufen Zou
- School of Mathematics and Statistics, Wuhan University, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
10
|
Hie B, Peters J, Nyquist SK, Shalek AK, Berger B, Bryson BD. Computational Methods for Single-Cell RNA Sequencing. Annu Rev Biomed Data Sci 2020. [DOI: 10.1146/annurev-biodatasci-012220-100601] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Single-cell RNA sequencing (scRNA-seq) has provided a high-dimensional catalog of millions of cells across species and diseases. These data have spurred the development of hundreds of computational tools to derive novel biological insights. Here, we outline the components of scRNA-seq analytical pipelines and the computational methods that underlie these steps. We describe available methods, highlight well-executed benchmarking studies, and identify opportunities for additional benchmarking studies and computational methods. As the biochemical approaches for single-cell omics advance, we propose coupled development of robust analytical pipelines suited for the challenges that new data present and principled selection of analytical methods that are suited for the biological questions to be addressed.
Collapse
Affiliation(s)
- Brian Hie
- Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Joshua Peters
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, USA
| | - Sarah K. Nyquist
- Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, USA
- Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Alex K. Shalek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, USA
- Department of Chemistry, Institute for Medical Engineering & Science (IMES), and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Bryan D. Bryson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
11
|
Efremova M, Vento-Tormo R, Park JE, Teichmann SA, James KR. Immunology in the Era of Single-Cell Technologies. Annu Rev Immunol 2020; 38:727-757. [PMID: 32075461 DOI: 10.1146/annurev-immunol-090419-020340] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immune cells are characterized by diversity, specificity, plasticity, and adaptability-properties that enable them to contribute to homeostasis and respond specifically and dynamically to the many threats encountered by the body. Single-cell technologies, including the assessment of transcriptomics, genomics, and proteomics at the level of individual cells, are ideally suited to studying these properties of immune cells. In this review we discuss the benefits of adopting single-cell approaches in studying underappreciated qualities of immune cells and highlight examples where these technologies have been critical to advancing our understanding of the immune system in health and disease.
Collapse
Affiliation(s)
- Mirjana Efremova
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom; ,
| | - Roser Vento-Tormo
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom; ,
| | - Jong-Eun Park
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom; ,
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom; , .,Theory of Condensed Matter, Department of Physics, University of Cambridge, Cambridgeshire CB3 0HE, United Kingdom.,European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Kylie R James
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom; ,
| |
Collapse
|
12
|
Brückner DB, Fink A, Rädler JO, Broedersz CP. Disentangling the behavioural variability of confined cell migration. J R Soc Interface 2020; 17:20190689. [PMCID: PMC7061702 DOI: 10.1098/rsif.2019.0689] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/17/2020] [Indexed: 12/30/2024] Open
Abstract
Cell-to-cell variability is inherent to numerous biological processes, including cell migration. Quantifying and characterizing the variability of migrating cells is challenging, as it requires monitoring many cells for long time windows under identical conditions. Here, we observe the migration of single human breast cancer cells (MDA-MB-231) in confining two-state micropatterns. To describe the stochastic dynamics of this confined migration, we employ a dynamical systems approach. We identify statistics to measure the behavioural variance of the migration, which significantly exceeds that predicted by a population-averaged stochastic model. This additional variance can be explained by the combination of an ‘ageing’ process and population heterogeneity. To quantify population heterogeneity, we decompose the cells into subpopulations of slow and fast cells, revealing the presence of distinct classes of dynamical systems describing the migration, ranging from bistable to limit cycle behaviour. Our findings highlight the breadth of migration behaviours present in cell populations.
Collapse
Affiliation(s)
- David B. Brückner
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität, München, Bayern, Germany
| | - Alexandra Fink
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, München, Bayern, Germany
| | - Joachim O. Rädler
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, München, Bayern, Germany
| | - Chase P. Broedersz
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität, München, Bayern, Germany
| |
Collapse
|
13
|
Chew G, Petretto E. Transcriptional Networks of Microglia in Alzheimer's Disease and Insights into Pathogenesis. Genes (Basel) 2019; 10:E798. [PMID: 31614849 PMCID: PMC6826883 DOI: 10.3390/genes10100798] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/30/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023] Open
Abstract
Microglia, the main immune cells of the central nervous system, are increasingly implicated in Alzheimer's disease (AD). Manifold transcriptomic studies in the brain have not only highlighted microglia's role in AD pathogenesis, but also mapped crucial pathological processes and identified new therapeutic targets. An important component of many of these transcriptomic studies is the investigation of gene expression networks in AD brain, which has provided important new insights into how coordinated gene regulatory programs in microglia (and other cell types) underlie AD pathogenesis. Given the rapid technological advancements in transcriptional profiling, spanning from microarrays to single-cell RNA sequencing (scRNA-seq), tools used for mapping gene expression networks have evolved to keep pace with the unique features of each transcriptomic platform. In this article, we review the trajectory of transcriptomic network analyses in AD from brain to microglia, highlighting the corresponding methodological developments. Lastly, we discuss examples of how transcriptional network analysis provides new insights into AD mechanisms and pathogenesis.
Collapse
Affiliation(s)
- Gabriel Chew
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 69857 Singapore, Singapore.
| | - Enrico Petretto
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 69857 Singapore, Singapore.
| |
Collapse
|
14
|
Blencowe M, Arneson D, Ding J, Chen YW, Saleem Z, Yang X. Network modeling of single-cell omics data: challenges, opportunities, and progresses. Emerg Top Life Sci 2019; 3:379-398. [PMID: 32270049 PMCID: PMC7141415 DOI: 10.1042/etls20180176] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/07/2019] [Accepted: 06/24/2019] [Indexed: 01/07/2023]
Abstract
Single-cell multi-omics technologies are rapidly evolving, prompting both methodological advances and biological discoveries at an unprecedented speed. Gene regulatory network modeling has been used as a powerful approach to elucidate the complex molecular interactions underlying biological processes and systems, yet its application in single-cell omics data modeling has been met with unique challenges and opportunities. In this review, we discuss these challenges and opportunities, and offer an overview of the recent development of network modeling approaches designed to capture dynamic networks, within-cell networks, and cell-cell interaction or communication networks. Finally, we outline the remaining gaps in single-cell gene network modeling and the outlooks of the field moving forward.
Collapse
Affiliation(s)
- Montgomery Blencowe
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, U.S.A
| | - Douglas Arneson
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, U.S.A
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, U.S.A
| | - Jessica Ding
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, U.S.A
| | - Yen-Wei Chen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, U.S.A
- Molecular Toxicology Program, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, U.S.A
| | - Zara Saleem
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, U.S.A
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, U.S.A
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, U.S.A
- Molecular Toxicology Program, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, U.S.A
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, U.S.A
| |
Collapse
|