1
|
Lin YY, Zhao S, Lin X, Zhang T, Li CX, Luo XM, Feng JX. Improvement of cellulase and xylanase production in Penicillium oxalicum under solid-state fermentation by flippase recombination enzyme/ recognition target-mediated genetic engineering of transcription repressors. BIORESOURCE TECHNOLOGY 2021; 337:125366. [PMID: 34144430 DOI: 10.1016/j.biortech.2021.125366] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 05/15/2023]
Abstract
Penicillium oxalicum has received increasing attention as a potential cellulase-producer. In this study, a copper-controlled flippase recombination enzyme/recognition target (FLP/FRT)-mediated recombination system was constructed in P. oxalicum, to overcome limited availability of antibiotic resistance markers. Using this system, two crucial transcription repressor genes atf1 and cxrC for the production of cellulase and xylanase under solid-state fermentation (SSF) were simultaneously deleted, thereby leading to 2.4- to 29.1-fold higher cellulase and 78.9% to 130.8% higher xylanase production than the parental strain under SSF, respectively. Glucose and xylose released from hydrolysis of pretreated sugarcane bagasse achieved 10.6%-13.5% improvement by using the crude enzymes from the engineered strain Δatf1ΔcxrC::flp under SSF in comparison with that of the parental strain. Consequently, these results provide a feasible strategy for improved cellulase and xylanase production by filamentous fungi.
Collapse
Affiliation(s)
- Ying-Ying Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Xiong Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Ting Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Cheng-Xi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Xue-Mei Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China.
| |
Collapse
|
2
|
Bernasek SM, Peláez N, Carthew RW, Bagheri N, Amaral LAN. Fly-QMA: Automated analysis of mosaic imaginal discs in Drosophila. PLoS Comput Biol 2020; 16:e1007406. [PMID: 32126077 PMCID: PMC7100978 DOI: 10.1371/journal.pcbi.1007406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 03/27/2020] [Accepted: 01/27/2020] [Indexed: 12/01/2022] Open
Abstract
Mosaic analysis provides a means to probe developmental processes in situ by generating loss-of-function mutants within otherwise wildtype tissues. Combining these techniques with quantitative microscopy enables researchers to rigorously compare RNA or protein expression across the resultant clones. However, visual inspection of mosaic tissues remains common in the literature because quantification demands considerable labor and computational expertise. Practitioners must segment cell membranes or cell nuclei from a tissue and annotate the clones before their data are suitable for analysis. Here, we introduce Fly-QMA, a computational framework that automates each of these tasks for confocal microscopy images of Drosophila imaginal discs. The framework includes an unsupervised annotation algorithm that incorporates spatial context to inform the genetic identity of each cell. We use a combination of real and synthetic validation data to survey the performance of the annotation algorithm across a broad range of conditions. By contributing our framework to the open-source software ecosystem, we aim to contribute to the current move toward automated quantitative analysis among developmental biologists.
Collapse
Affiliation(s)
- Sebastian M. Bernasek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, Illinois, United States of America
| | - Nicolás Peláez
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Richard W. Carthew
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, Illinois, United States of America
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
- Department of Biochemistry and Molecular Genetics, Northwestern University, Evanston, Illinois, United States of America
| | - Neda Bagheri
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, Illinois, United States of America
- Department of Biology, University of Washington, Seattle, Washington, United States of America
- Department of Chemical Engineering, University of Washington, Seattle, Washington, United States of America
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, Illinois, United States of America
| | - Luís A. N. Amaral
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, Illinois, United States of America
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, Illinois, United States of America
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois, United States of America
| |
Collapse
|