1
|
Alves S, Junior CS, Muniz G, Silva L, Zortea R, Lima V, Veiga G, Alves B, Fonseca F. Application of Z-scan technique in detecting circulating free DNA for prostate cancer diagnosis and monitoring. Lasers Med Sci 2025; 40:114. [PMID: 39984815 DOI: 10.1007/s10103-025-04357-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/07/2025] [Indexed: 02/23/2025]
Abstract
Prostate cancer diagnosis relies on methods like PSA testing, digital rectal exams, and biopsies. The Z-scan technique, a nonlinear optical method, may provide a new, non-invasive approach to detecting circulating free DNA (ccfDNA) in serum, offering potential improvements in cancer diagnosis and monitoring. The aim of this study is to evaluate whether the Z-scan technique can serve as an alternative or complementary diagnostic tool to existing prostate cancer tests. The Z-scan technique was applied to detect apoptotic and necrotic ccfDNA fragments in the serum or plasma of prostate cancer patients. This technique measures the nonlinear refractive index's dispersive and absorptive components and was compared with laboratory data, such as PSA levels and cancer progression indicators. The study found a correlation between Z-scan-derived θ values and PSA levels, suggesting its utility in identifying cancer relapse. However, no correlation was observed with the Gleason scale. The Z-scan technique shows promise as a diagnostic and monitoring tool for prostate cancer, offering a potential non-invasive alternative to traditional methods.
Collapse
Affiliation(s)
- Sarah Alves
- Federal University of São Paulo, São Paulo, Brazil
| | - Charles Silva Junior
- Federal University of São Paulo, São Paulo, Brazil
- Faculdade de Medicina do ABC, Santo André, Brazil
| | | | - Luiz Silva
- Universidade de São Paulo, São Paulo, Brazil
| | | | - Vagner Lima
- Faculdade de Medicina do ABC, Santo André, Brazil
| | | | | | - Fernando Fonseca
- Federal University of São Paulo, São Paulo, Brazil
- Faculdade de Medicina do ABC, Santo André, Brazil
| |
Collapse
|
2
|
Nel I, Münch C, Shamkeeva S, Heinemann ML, Isermann B, Aktas B. The Challenge to Stabilize, Extract and Analyze Urinary Cell-Free DNA (ucfDNA) during Clinical Routine. Diagnostics (Basel) 2023; 13:3670. [PMID: 38132253 PMCID: PMC10743081 DOI: 10.3390/diagnostics13243670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND The "Liquid Biopsy" has become a powerful tool for cancer research during the last decade. Circulating cell-free DNA (cfDNA) that originates from tumors has emerged as one of the most promising analytes. In contrast to plasma-derived cfDNA, only a few studies have investigated urinary cfDNA. One reason might be rapid degradation and hence inadequate concentrations for downstream analysis. In this study, we examined the stability of cfDNA in urine using different methods of preservation under various storage conditions. METHODOLOGY To mimic patient samples, a pool of healthy male and female urine donors was spiked with a synthetic cfDNA reference standard (fragment size 170 bp) containing the T790M mutation in the EGFR gene. Spiked samples were preserved with three different buffers and with no buffer over four different storage periods (0 h; 4 h; 12 h; 24 h) at room temperature vs. 4 °C. The preservatives used were Urinary Analyte Stabilizer (UAS, Novosanis, Wijnegem, Belgium), Urine Conditioning Buffer (UCB, Zymo, Freiburg, Germany) and a self-prepared buffer called "AlloU". CfDNA was extracted using the QIAamp MinElute ccfDNA Mini Kit (Qiagen, Hilden, Germany). CfDNA concentration was measured using the Qubit™ 4 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA). Droplet digital PCR (ddPCR) was used for detection and quantification of the T790M mutation. RESULTS Almost no spiked cfDNA was recoverable from samples with no preservation buffer and the T790M variant was not detectable in these samples. These findings indicate that cfDNA was degraded below the detection limit by urinary nucleases. Stabilizing buffers showed varying efficiency in preventing this degradation. The most effective stabilizing buffer under all storage conditions was the UAS, enabling adequate recovery of the T790M variant using ddPCR. CONCLUSION From a technical point of view, stabilizing buffers and adequate storage conditions are a prerequisite for translation of urinary cfDNA diagnostics into clinical routine.
Collapse
Affiliation(s)
- Ivonne Nel
- Department of Gynecology, Medical Center, University of Leipzig, 04103 Leipzig, Germany
| | - Carolin Münch
- Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Saikal Shamkeeva
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University Hospital, 04103 Leipzig, Germany
| | - Mitja L. Heinemann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University Hospital, 04103 Leipzig, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University Hospital, 04103 Leipzig, Germany
| | - Bahriye Aktas
- Department of Gynecology, Medical Center, University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
3
|
Salfer B, Li F, Wong DT, Zhang L. Urinary Cell-Free DNA in Liquid Biopsy and Cancer Management. Clin Chem 2022; 68:1493-1501. [PMID: 36213956 PMCID: PMC10423312 DOI: 10.1093/clinchem/hvac122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/30/2022] [Indexed: 11/14/2022]
Abstract
BACKGROUND The current methodology used to detect, diagnose, and monitor many types of cancers requires invasive tissue biopsy testing. Recently, liquid biopsy using blood, plasma, urine, saliva, and various other bodily fluids has shown utility to solve many issues associated with tissue biopsy. Blood/plasma has received most of the attention within the liquid biopsy field, however, obtaining blood samples from patients is still somewhat invasive and requires trained professionals. Using urine to detect cell-free DNA cancer biomarkers offers a truly non-invasive sampling method that can be easily and reproducibly conducted by patients. CONTENT Novel technologies and approaches have made the detection of small quantities of cell-free tumor DNA of varying lengths possible. Recent studies using urine circulating tumor DNA to detect cancer mutations and other biomarkers have shown sensitivity comparable to blood/plasma cell-free DNA liquid biopsy for many cancer types. Thus, urine cell-free DNA liquid biopsy may replace or provide supplementary information to tissue/blood biopsies. Further investigation with larger patient cohorts and standardization of pre-analytical factors is necessary to determine the utility of urine cell-free DNA liquid biopsy for cancer detection, diagnosis, and monitoring in a clinical setting. SUMMARY In this mini-review we discuss the biological aspects of cell-free DNA in urine, numerous studies using urine cell-free DNA to detect urological cancers, and recent studies using urine cell-free DNA to detect and monitor non-urological cancers including lung, breast, colorectal, and other cancers.
Collapse
Affiliation(s)
- Blake Salfer
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Feng Li
- School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - David T.W. Wong
- School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Liying Zhang
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Dynamics of Plasma and Urinary Extracellular DNA in Acute Kidney Injury. Int J Mol Sci 2022; 23:ijms23063402. [PMID: 35328821 PMCID: PMC8949705 DOI: 10.3390/ijms23063402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/12/2022] [Accepted: 03/18/2022] [Indexed: 12/21/2022] Open
Abstract
Early and reliable markers of acute kidney injury (AKI) are essential. One such candidate marker of tissue damage is extracellular DNA (ecDNA). The aim of our present study is to describe the unknown dynamics of ecDNA in an animal model of AKI. Glycerol-induced nephropathy was used to model AKI in adult male Wistar rats (n = 93). Blood and urine samples were collected 1, 3, and 24 h after model induction. Total ecDNA and its sub-cellular origin was assessed. In the plasma, total ecDNA and nuclear ecDNA were significantly increased in the AKI group already after 1 h (160% and 270%, respectively, p = 0.02 and p = 0.04). Both nuclear and mitochondrial ecDNA were higher after 3 h (180% and 170%, respectively, p = 0.002 and p = 0.005). Urinary ecDNA concentrations in the AKI group were significantly increased only 24 h after model induction (130% for total ecDNA, p = 0.009; 210% for nuclear ecDNA, p = 0.02; and 200% for mitochondrial ecDNA, p = 0.0009). Our results indicate that plasma ecDNA has the potential to serve as an early and sensitive, albeit non-specific marker of AKI. Further studies should elucidate the source of ecDNA and the dynamics of ecDNA in other animal models of AKI and patients with AKI.
Collapse
|
5
|
Cai YX, Yang X, Lin S, Xu YW, Zhu SW, Fan DM, Zhao M, Zhang YB, Yang XX, Li X. Low-Coverage Sequencing of Urine Sediment DNA for Detection of Copy Number Aberrations in Bladder Cancer. Cancer Manag Res 2021; 13:1943-1953. [PMID: 33664588 PMCID: PMC7924115 DOI: 10.2147/cmar.s295675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/15/2021] [Indexed: 01/08/2023] Open
Abstract
Purpose Chromosomal copy number aberrations (CNAs) are a hallmark of bladder cancer and a useful target for diagnostic explorations. Here we constructed a low-coverage whole-genome sequencing method for the detection of CNAs in urine sediment DNA from patients with bladder cancer. Patients and Methods We conducted a prospective study using urine sediment samples from 65 patients with bladder tumors, including 54 patients with bladder cancer and 11 patients with benign bladder tumors. Forty-three healthy individuals were included as normal controls. DNA was extracted from urine sediments and analyzed by low-coverage whole-genome sequencing to compare differences in CNAs among these three groups. CNAs are defined by arbitrary R values (normal range ± 2). When these values exceed ± 0.2 of normal range, gain/duplication or loss/deletion are suspected. Results With this method, CNAs were detected in 39 of 51 patients with bladder cancer, 2 of 10 patients with benign bladder tumors, and 8 of 39 normal controls. The lengths of DNA deletion and duplication were significantly larger in patients with bladder cancer than in patients with benign tumors or normal controls (P < 0.05). Bladder cancer duplicate CNAs mainly occurred on chromosomes 1q, 5p, 6p, 7p, 8q, and 13q, while deletions mainly occurred on 2q, 8p, 9q, 9p, and 11p. Those regions contained bladder cancer tumor-related genes, such as STK3, COX6C, SPAG1, CDKAL1, C9orf53, CDKN2A, CDKN2B, MIR31, and IFNA1. The number of CNAs detected in urine sediment DNA during the follow-up period was significantly reduced. Conclusion Our sequencing method is highly sensitive and can detect a minimal chromosome repeat/microdeletion change of 0.15 Mb. The use of 0.1~0.3× low-coverage whole-genome sequencing can be used to detect bladder cancer CNAs in urine sediment DNA. This method provides a promising method for noninvasive diagnosis of bladder cancer, but still needs further verification in a larger sample size.
Collapse
Affiliation(s)
- Yun-Xi Cai
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, 518110, People's Republic of China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510500, People's Republic of China
| | - Xu Yang
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, 518110, People's Republic of China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510500, People's Republic of China
| | - Sheng Lin
- Laboratory of Molecular Medicine, Shenzhen Health Development Research Center, Shenzhen, 518040, People's Republic of China
| | - Ya-Wen Xu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, People's Republic of China
| | - Shan-Wen Zhu
- Reproductive Medicine Center, Huizhou Central People's Hospital, Huizhou, 516000, People's Republic of China
| | - Dong-Mei Fan
- Institute of Antibody Engineering, School of Laboratory Medical and Biotechnology, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Min Zhao
- PANACRO (Hefei) Pharmaceutical Technology Co., Ltd., Hefei, People's Republic of China
| | - Yuan-Bin Zhang
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, 518110, People's Republic of China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510500, People's Republic of China
| | - Xue-Xi Yang
- Institute of Antibody Engineering, School of Laboratory Medical and Biotechnology, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Xin Li
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, 518110, People's Republic of China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510500, People's Republic of China
| |
Collapse
|
6
|
Urinary Cell-Free DNA in Bladder Cancer Detection. Diagnostics (Basel) 2021; 11:diagnostics11020306. [PMID: 33672869 PMCID: PMC7918217 DOI: 10.3390/diagnostics11020306] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/22/2021] [Accepted: 02/11/2021] [Indexed: 12/09/2022] Open
Abstract
Urinary bladder cancer is a common urological cancer. Although flexible cystoscopy is widely employed in bladder cancer detection, it is expensive, invasive, and uncomfortable to the patients. Recently, urinary cell-free DNA (ucfDNA) isolated from urine supernatant has been shown to have great potential in bladder cancer detection and surveillance. Molecular features, such as integrity and concentration of ucfDNA, have been shown to be useful for differentiating bladder cancer patients from healthy controls. Besides, bladder cancer also exhibits unique genetic features that can be identified from sequencing and expression of ucfDNA. Apart from bladder cancer detection, ucfDNA is also useful for molecular classification. For example, ucfDNA exhibits significant differences, both molecularly and genetically, in non-muscle-invasive and muscle-invasive bladder cancers. There is no doubt that ucfDNA is a very promising tool for future applications in the field of bladder cancer.
Collapse
|
7
|
da Veiga GL, da Costa Aguiar Alves B, Perez MM, Raimundo JR, de Araújo Encinas JF, Murad N, Fonseca FLA. Kidney Diseases: The Age of Molecular Markers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1306:13-27. [PMID: 33959903 DOI: 10.1007/978-3-030-63908-2_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Kidney diseases are conditions that increase the morbidity and mortality of those afflicted. Diagnosis of these conditions is based on parameters such as the glomerular filtration rate (GFR), measurement of serum and urinary creatinine levels and equations derived from these measurements (Wasung, Chawla, Madero. Clin Chim Acta 438:350-357, 2015). However, serum creatinine as a marker for measuring renal dysfunction has its limitations since it is altered in several other physiological situations, such as in patients with muscle loss, after intense physical exercise or in people on a high protein diet (Riley, Powers, Welch. Res Q Exerc Sport 52(3):339-347, 1981; Juraschek, Appel, Anderson, Miller. Am J Kidney Dis 61(4):547-554, 2013). Besides the fact that serum creatinine is a marker that indicates glomerular damage, it is necessary the discovery of new biomarkers that reflect not only glomerular damage but also tubular impairment. Recent advances in Molecular Biology have led to the generation or identification of new biomarkers for kidney diseases such as: Acute Kidney Failure (AKI), chronic kidney disease (CKD), nephritis or nephrotic syndrome. There are recent markers that have been used to aid in diagnosis and have been shown to be more sensitive and specific than classical markers, such as neutrophil gelatinase associated lipocalin (NGAL) or kidney injury molecule-1 (KIM-1) (Wasung, Chawla, Madero. Clin Chim Acta 438:350-357, 2015; George, Gounden. Adv Clin Chem 88:91-119, 2019; Han, Bailly, Abichandani, Thadhani, Bonventre. Kidney Int 62(1):237-244, 2002; Fontanilla, Han. Expert Opin Med Diagn 5(2):161-173, 2011). However, early diagnostic biomarkers are still necessary to assist the intervention and monitor of the progression of these conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Neif Murad
- Cardiology Department, Centro Universitário Saúde ABC, Santo André, Brazil
| | - Fernando Luiz Affonso Fonseca
- Division of Clinical Analysis, Centro Universitário Saúde ABC, Santo André, Brazil.,Pharmaceutical Science Department, Universidade Federal de São Paulo/UNIFESP - Diadema, Butantã, São Paulo, Brazil
| |
Collapse
|