1
|
Kratka K, Sistik P, Olivkova I, Kusnierova P, Svagera Z, Stejskal D. Mass Spectrometry-Based Proteomics in Clinical Diagnosis of Amyloidosis and Multiple Myeloma: A Review (2012-2024). JOURNAL OF MASS SPECTROMETRY : JMS 2025; 60:e5116. [PMID: 39967472 PMCID: PMC11836596 DOI: 10.1002/jms.5116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/08/2024] [Accepted: 01/07/2025] [Indexed: 02/20/2025]
Abstract
Proteomics is nowadays increasingly becoming part of the routine clinical practice of diagnostic laboratories, especially due to the advent of advanced mass spectrometry techniques. This review focuses on the application of proteomic analysis in the identification of pathological conditions in a hospital setting, with a particular focus on the analysis of protein biomarkers. In particular, the main purpose of the review is to highlight the challenges associated with the identification of specific disease-causing proteins, given their complex nature and the variety of posttranslational modifications (PTMs) they can undergo. PTMs, such as phosphorylation and glycosylation, play critical roles in protein function but can also lead to diseases if dysregulated. Proteomics plays an important role especially in various medical fields ranging from cardiology, internal medicine to hemato-oncology emphasizing the interdisciplinary nature of this field. Traditional methods such as electrophoretic or immunochemical methods have been mainstay in protein detection; however, these techniques are limited in terms of specificity and sensitivity. Examples include the diagnosis of multiple myeloma and the detection of its specific protein or amyloidosis, which relies heavily on these conventional methods, which sometimes lead to false positives or inadequate disease monitoring. Mass spectrometry in this respect emerges as a superior alternative, providing high sensitivity and specificity in the detection and quantification of specific protein sequences. This technique is particularly beneficial for monitoring minimal residual disease (MRD) in the diagnosis of multiple myeloma where traditional methods fall short. Furthermore mass spectrometry can provide precise typing of amyloid proteins, which is crucial for the appropriate treatment of amyloidosis. This review summarizes the opportunities for proteomic determination using mass spectrometry between 2012 and 2024, highlighting the transformative potential of mass spectrometry in clinical proteomics and encouraging its wider use in diagnostic laboratories.
Collapse
Affiliation(s)
- Katerina Kratka
- Institute of Laboratory Medicine, Faculty of MedicineUniversity of OstravaOstravaCzech Republic
- Institute of Laboratory MedicineUniversity Hospital OstravaOstravaCzech Republic
| | - Pavel Sistik
- Institute of Laboratory Medicine, Faculty of MedicineUniversity of OstravaOstravaCzech Republic
- Department of Clinical Pharmacology, Institute of Laboratory MedicineUniversity Hospital OstravaOstravaCzech Republic
| | - Ivana Olivkova
- Institute of Laboratory Medicine, Faculty of MedicineUniversity of OstravaOstravaCzech Republic
- Institute of Laboratory MedicineUniversity Hospital OstravaOstravaCzech Republic
| | - Pavlina Kusnierova
- Institute of Laboratory Medicine, Faculty of MedicineUniversity of OstravaOstravaCzech Republic
- Department of Clinical BiochemistryUniversity Hospital OstravaOstravaCzech Republic
| | - Zdenek Svagera
- Institute of Laboratory Medicine, Faculty of MedicineUniversity of OstravaOstravaCzech Republic
- Department of Clinical BiochemistryUniversity Hospital OstravaOstravaCzech Republic
| | - David Stejskal
- Institute of Laboratory Medicine, Faculty of MedicineUniversity of OstravaOstravaCzech Republic
- Institute of Laboratory MedicineUniversity Hospital OstravaOstravaCzech Republic
| |
Collapse
|
2
|
Nematullah M, Rashid F, Nimker S, Khan F. Protein Phosphatase 2A Regulates Phenotypic and Metabolic Alteration of Microglia Cells in HFD-Associated Vascular Dementia Mice via TNF-α/Arg-1 Axis. Mol Neurobiol 2023; 60:4049-4063. [PMID: 37017907 DOI: 10.1007/s12035-023-03324-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/20/2023] [Indexed: 04/06/2023]
Abstract
Protein phosphatase 2A (PP2A), the activity of which is dictated by the composition of its regulatory subunit, is strongly related to the progression of neurodegenerative disease. The potential role of PP2A on the phenotypic transition of microglial cells under obese conditions is poorly explored. An understanding of the role of PP2A and identification of regulatory subunits contributing to microglial phenotypic transitions in obese condition may serve as a therapeutic target for obesity-associated neurodegeneration. C57BL/6 mice were exposed to obese-associated vascular dementia conditions by performing unilateral common carotid artery occlusion on obese mice of microglial polarization and PP2A activity using flow cytometry, real-time PCR, western blotting, and immunoprecipitation enzymatic assay, followed identifications of PP2A regulatory subunits using LCMS and RT-PCR. Chronic HFD feeding significantly increased the populations of infiltrated macrophages, showing a high percentage of CD86+ in VaD mice, and the expression of pro-inflammatory cytokines, and we observed that PP2A modulates metabolic reprogramming of microglia by regulating OXPHOS/ECAR activity. Using Co-IP and LCMS, we identified the six specific regulatory subunits, namely PPP2R2A, PPP2R2D, PPP2R5B, PPP2R5C, PPP2R5D, and PPP2R5E, that are associated with microglial-activation during obesity-associated-VaD. Interestingly, pharmacological up-regulation of PP2A more significantly suppressed the expression of TNF-alpha than other pro-inflammatory-cytokines and increased the expression of Arginase-1, suggesting that PP2A modulates microglial-phenotypic transitions through TNF-α/Arg-1 axis. Our present findings demonstrate microglial polarization in HFD associated with VaD, and point towards a therapeutic target by providing specific PP2A regulatory-subunits implicated in microglial activation during obesity-related-vascular-dementia.
Collapse
Affiliation(s)
- Md Nematullah
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Faraz Rashid
- Department of Neurology, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Shwetanjali Nimker
- Application Scientist, BD Biosciences India Pvt. Ltd, Jamia Hamdard, New Delhi, 110062, India
| | - Farah Khan
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
3
|
Effects of Silk Fibroin Enzyme Hydrolysates on Memory and Learning: A Review. Molecules 2022; 27:molecules27175407. [PMID: 36080178 PMCID: PMC9457898 DOI: 10.3390/molecules27175407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/05/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Abstract
Silk protein products have been used for a wide range of applications. This review focuses on the studies conducted relative to cognitive functions with silk fibroin enzyme hydrolysates (FEH) in humans and animals. All known studies reported in PubMed and Google Scholar have been included. Studies have been conducted on children, high school and college students, adults and seniors, ranging in ages from 7–92 years. Doses of 200–600 mg silk FEH per day for three weeks to 16 weeks have been used. Based on these studies, it can be concluded that silk FEH exhibit beneficial cognitive effects with respect to memory and learning, attention, mental focus, accuracy, memory recall, and overall memory and concentration. These conclusions are supported by studies in rats and mice. Mechanistic studies that have been conducted in animals and cell culture systems are also reviewed. These studies indicate that silk FEH exerts its positive effects on memory and learning by providing neuroprotection via a complex mechanism involving its potent antioxidant and inflammation-inhibiting activities. Acetylcholine (ACh) is secreted by cholinergic neurons, and plays a role in encoding new information. Silk FEH were shown to decrease the levels of the pro-oxidant and pro-inflammatory mediators interlukin-1 (IL-1β), IL-6 and tumor necrosis factor-alpha (TNF-α), protecting the cholinergic system from oxidative stress, thus enhancing ACh levels in the brain, which is known to promote cognitive functions. In addition, the expression of brain-derived neurotrophic factor (BNDF), which is involved in the survival of neurons, is enhanced, and an increase in the expression of the phosphorylated cAMP response element-binding protein (p-CREB) occurs, which is known to play a positive role in cognitive functions. No adverse effects have been reported in association with the use of silk FEH.
Collapse
|
4
|
Ahire D, Kruger L, Sharma S, Mettu VS, Basit A, Prasad B. Quantitative Proteomics in Translational Absorption, Distribution, Metabolism, and Excretion and Precision Medicine. Pharmacol Rev 2022; 74:769-796. [PMID: 35738681 PMCID: PMC9553121 DOI: 10.1124/pharmrev.121.000449] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A reliable translation of in vitro and preclinical data on drug absorption, distribution, metabolism, and excretion (ADME) to humans is important for safe and effective drug development. Precision medicine that is expected to provide the right clinical dose for the right patient at the right time requires a comprehensive understanding of population factors affecting drug disposition and response. Characterization of drug-metabolizing enzymes and transporters for the protein abundance and their interindividual as well as differential tissue and cross-species variabilities is important for translational ADME and precision medicine. This review first provides a brief overview of quantitative proteomics principles including liquid chromatography-tandem mass spectrometry tools, data acquisition approaches, proteomics sample preparation techniques, and quality controls for ensuring rigor and reproducibility in protein quantification data. Then, potential applications of quantitative proteomics in the translation of in vitro and preclinical data as well as prediction of interindividual variability are discussed in detail with tabulated examples. The applications of quantitative proteomics data in physiologically based pharmacokinetic modeling for ADME prediction are discussed with representative case examples. Finally, various considerations for reliable quantitative proteomics analysis for translational ADME and precision medicine and the future directions are discussed. SIGNIFICANCE STATEMENT: Quantitative proteomics analysis of drug-metabolizing enzymes and transporters in humans and preclinical species provides key physiological information that assists in the translation of in vitro and preclinical data to humans. This review provides the principles and applications of quantitative proteomics in characterizing in vitro, ex vivo, and preclinical models for translational research and interindividual variability prediction. Integration of these data into physiologically based pharmacokinetic modeling is proving to be critical for safe, effective, timely, and cost-effective drug development.
Collapse
Affiliation(s)
- Deepak Ahire
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Laken Kruger
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Sheena Sharma
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Vijaya Saradhi Mettu
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Abdul Basit
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| |
Collapse
|
5
|
Chen Y, Wu X, Chen C, Huang Q, Li C, Zhang X, Tan X, Zhang D, Liu Y. Proteomics Analysis Reveals the Molecular Mechanism of MoPer1 Regulating the Development and Pathogenicity of Magnaporthe oryzae. Front Cell Infect Microbiol 2022; 12:926771. [PMID: 35811686 PMCID: PMC9269092 DOI: 10.3389/fcimb.2022.926771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Glycosylphosphatidylinositol (GPI) anchoring the protein GPI modification post-transcriptionally is commonly seen. In our previous study, MoPer1, a GPI anchoring essential factor, has a critical effect on Magnaporthe oryzae growth, pathogenicity, and conidiogenesis, but its molecular mechanism is not clear. Here, we extracted the glycoproteins from the ΔMoper1 mutant and wild-type Guy11 to analyze their differential levels by quantitative proteomic analysis of TMT markers. After background subtraction, a total of 431 proteins, with significant changes in expression, were successfully identified, and these differential proteins were involved in biological regulation, as well as cellular process and metabolic process, binding, catalytic activity, and other aspects. Moreover, we found that MoPer1 regulates the expression of 14 proteins involved in growth, development, and pathogenicity of M. oryzae. The above findings shed light on MoPer1’s underlying mechanism in regulating growth, development, and pathogenicity of M. oryzae.
Collapse
Affiliation(s)
- Yue Chen
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
- Long Ping Branch, Graduate School of Hunan University, Changsha, China
| | - Xiyang Wu
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
- Long Ping Branch, Graduate School of Hunan University, Changsha, China
| | - Chunyan Chen
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Qiang Huang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Chenggang Li
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xin Zhang
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xinqiu Tan
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
- Long Ping Branch, Graduate School of Hunan University, Changsha, China
| | - Deyong Zhang
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
- Long Ping Branch, Graduate School of Hunan University, Changsha, China
- *Correspondence: Yong Liu, ; Deyong Zhang,
| | - Yong Liu
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
- Long Ping Branch, Graduate School of Hunan University, Changsha, China
- *Correspondence: Yong Liu, ; Deyong Zhang,
| |
Collapse
|
6
|
Liu Y, Ding Y, Liu Z, Chen Q, Li X, Xue X, Pu Y, Ma Y, Zhao Q. Integration Analysis of Transcriptome and Proteome Reveal the Mechanisms of Goat Wool Bending. Front Cell Dev Biol 2022; 10:836913. [PMID: 35433706 PMCID: PMC9011194 DOI: 10.3389/fcell.2022.836913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/08/2022] [Indexed: 12/20/2022] Open
Abstract
Zhongwei goat is a unique Chinese native goat breed for excellent lamb fur. The pattern of flower spikes of the lamb fur was significantly reduced due to the reduction of the bending of the hair strands with growth. In order to explore the molecular mechanism underlying hair bending with growth, we performed the comprehensive analysis of transcriptome and proteome of skins from 45-days, 108-days and 365-days goat based on TMT-based quantitative proteomics and RNA-seq methods. In the three comparison groups, 356, 592 and 282 differentially expressed proteins (DEPs) were screened, respectively. KEGG pathway analysis indicated that DEPs were significantly enriched in a set of signaling pathways related to wool growth and bending, such as ECM-receptor interaction, PI3K-Akt signaling pathway, PPAR signaling pathway, protein digestion and absorption, and metabolic pathways. In addition, 20 DEPs abundance of goat skin at three development stages were examined by PRM method, which validated the reliability of proteomic data. Among them, KRT and collagen alpha family may play an important role in the development of goat hair follicle and wool bending. COL6A1, COL6A2, CRNN, TNC and LOC102178129 were identified as candidate genes based on combined analysis of transcriptome and proteome data and PRM quantification. Our results identify the differential expressed proteins as well as pathways related to the wool bending of Zhongwei goats and provide a theoretical basis for further revealing the molecular mechanism underlying wool bending of goats.
Collapse
Affiliation(s)
- Yue Liu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affffairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yangyang Ding
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affffairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Zhanfa Liu
- The Ningxia Hui Autonomous Region Breeding Ground of Zhongwei Goat, Zhongwei, China
| | - Qian Chen
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affffairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Department of Animal Breeding and Reproduction, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xiaobo Li
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affffairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Department of Animal Breeding and Reproduction, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xianglan Xue
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affffairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yabin Pu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affffairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yuehui Ma
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- *Correspondence: Qianjun Zhao, ; Yuehui Ma,
| | - Qianjun Zhao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affffairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- *Correspondence: Qianjun Zhao, ; Yuehui Ma,
| |
Collapse
|
7
|
Ma SX, Seo BA, Kim D, Xiong Y, Kwon SH, Brahmachari S, Kim S, Kam TI, Nirujogi RS, Kwon SH, Dawson VL, Dawson TM, Pandey A, Na CH, Ko HS. Complement and Coagulation Cascades are Potentially Involved in Dopaminergic Neurodegeneration in α-Synuclein-Based Mouse Models of Parkinson's Disease. J Proteome Res 2021; 20:3428-3443. [PMID: 34061533 PMCID: PMC8628316 DOI: 10.1021/acs.jproteome.0c01002] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder that results in motor dysfunction and, eventually, cognitive impairment. α-Synuclein protein is known as a central protein to the pathophysiology of PD, but the underlying pathological mechanism still remains to be elucidated. In an effort to understand how α-synuclein underlies the pathology of PD, various PD mouse models with α-synuclein overexpression have been developed. However, systemic analysis of the brain proteome of those mouse models is lacking. In this study, we established two mouse models of PD by injecting α-synuclein preformed fibrils (PFF) or by inducing overexpression of human A53T α-synuclein to investigate common pathways in the two different types of the PD mouse models. For more accurate quantification of mouse brain proteome, the proteins were quantified using the method of stable isotope labeling with amino acids in mammals . We identified a total of 8355 proteins from the two mouse models; ∼6800 and ∼7200 proteins from α-synuclein PFF-injected mice and human A53T α-synuclein transgenic mice, respectively. Through pathway analysis of the differentially expressed proteins common to both PD mouse models, it was discovered that the complement and coagulation cascade pathways were enriched in the PD mice compared to control animals. Notably, a validation study demonstrated that complement component 3 (C3)-positive astrocytes were increased in the ventral midbrain of the intrastriatal α-synuclein PFF-injected mice and C3 secreted from astrocytes could induce the degeneration of dopaminergic neurons. This is the first study that highlights the significance of the complement and coagulation pathways in the pathogenesis of PD through proteome analyses with two sophisticated mouse models of PD.
Collapse
Affiliation(s)
- Shi-Xun Ma
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Bo Am Seo
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Donghoon Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Pharmacology, Peripheral Neuropathy Research Center, Dong-A University College of Medicine, Busan 49201, South Korea
| | - Yulan Xiong
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Seung-Hwan Kwon
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Saurav Brahmachari
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Sangjune Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Raja Sekhar Nirujogi
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Sang Ho Kwon
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Adrienne Helis Malvin Medical Research Foundation, New Orleans 70130, Louisiana, United States
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Adrienne Helis Malvin Medical Research Foundation, New Orleans 70130, Louisiana, United States
- Diana Helis Henry Medical Research Foundation, New Orleans 70130, Louisiana, United States
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Laboratory Medicine and Pathology, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, United States
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Chan Hyun Na
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Han Seok Ko
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Adrienne Helis Malvin Medical Research Foundation, New Orleans 70130, Louisiana, United States
- Diana Helis Henry Medical Research Foundation, New Orleans 70130, Louisiana, United States
| |
Collapse
|
8
|
Forensic proteomics. Forensic Sci Int Genet 2021; 54:102529. [PMID: 34139528 DOI: 10.1016/j.fsigen.2021.102529] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/19/2022]
Abstract
Protein is a major component of all biological evidence, often the matrix that embeds other biomolecules such as polynucleotides, lipids, carbohydrates, and small molecules. The proteins in a sample reflect the transcriptional and translational program of the originating cell types. Because of this, proteins can be used to identify body fluids and tissues, as well as convey genetic information in the form of single amino acid polymorphisms, the result of non-synonymous SNPs. This review explores the application and potential of forensic proteomics. The historical role that protein analysis played in the development of forensic science is examined. This review details how innovations in proteomic mass spectrometry have addressed many of the historical limitations of forensic protein science, and how the application of forensic proteomics differs from proteomics in the life sciences. Two more developed applications of forensic proteomics are examined in detail: body fluid and tissue identification, and proteomic genotyping. The review then highlights developing areas of proteomics that have the potential to impact forensic science in the near future: fingermark analysis, species identification, peptide toxicology, proteomic sex estimation, and estimation of post-mortem intervals. Finally, the review highlights some of the newer innovations in proteomics that may drive further development of the field. In addition to potential impact, this review also attempts to evaluate the stage of each application in the development, validation and implementation process. This review is targeted at investigators who are interested in learning about proteomics in a forensic context and expanding the amount of information they can extract from biological evidence.
Collapse
|
9
|
Martins-de-Souza D, Guest PC, Reis-de-Oliveira G, Schmitt A, Falkai P, Turck CW. An overview of the human brain myelin proteome and differences associated with schizophrenia. World J Biol Psychiatry 2021; 22:271-287. [PMID: 32602824 DOI: 10.1080/15622975.2020.1789217] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Disturbances in the myelin sheath drive disruptions in neural transmission and brain connectivity as seen in schizophrenia. Here, the myelin proteome was characterised in schizophrenia patients and healthy controls to visualise differences in proteomic profiles. METHODS A liquid chromatography tandem mass spectrometry-based shotgun proteomic analysis was performed of a myelin-enriched fraction of postmortem brain samples from schizophrenia patients (n = 12) and mentally healthy controls (n = 8). In silico pathway analyses were performed on the resulting data. RESULTS The present characterisation of the human myelinome led to the identification of 480 non-redundant proteins, of which 102 proteins are newly annotated to be associated with the myelinome. Levels of 172 of these proteins were altered between schizophrenia patients and controls. These proteins were mainly associated with glial cell differentiation, metabolism/energy, synaptic vesicle function and neurodegeneration. The hub proteins with the highest degree of connectivity in the network included multiple kinases and synaptic vesicle transport proteins. CONCLUSIONS Together these findings suggest disruptive effects on synaptic activity and therefore neural transmission and connectivity, consistent with the dysconnectivity hypothesis of schizophrenia. Further studies on these proteins may lead to the identification of potential drug targets related to the synaptic dysconnectivity in schizophrenia and other psychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION) Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil.,Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, Brazil.,D'Or Institute for Research and Education (IDOR), São Paulo, Brazil
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Guilherme Reis-de-Oliveira
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Christoph W Turck
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
10
|
Fujii DT, Yohannes E, Por ED, Gillette L, Beesley RD, Heitmann RJ, Chow GE, Burney RO. The proteome of human Fallopian tube lavages during the phase of embryo transit reveals candidate proteins for the optimization of preimplantation embryo culture. Hum Reprod 2021; 36:367-380. [PMID: 33355349 DOI: 10.1093/humrep/deaa333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/27/2020] [Indexed: 12/14/2022] Open
Abstract
STUDY QUESTION Are there phase-specific changes in the early secretory (ES) phase human tubal lavage proteome that can inform and potentially optimize IVF culture media? SUMMARY ANSWER The human tubal lavage proteome during the ES phase relative to the menstrual phase reveals substantial differential protein abundance in pathways such as glycolysis, redox homeostasis and activation of 14-3-3 zeta-mediated signaling. WHAT IS KNOWN ALREADY The Fallopian tube is uniquely suited to the development of the preimplantation embryo as it transits the tube during the ES phase of the menstrual cycle. Euploid cleavage-stage embryo arrest may reflect incomplete recapitulation of in-vivo conditions by current media formulations. STUDY DESIGN, SIZE, DURATION Proteome-wide analysis of distal tubal lavage specimens collected from 26 healthy women undergoing open microtubal anastomosis surgery from January 2013 to January 2018 was performed. Specimens were grouped by menstrual cycle phase in order to analyze phase-specific differences in protein abundance. For the murine embryo assay, single-cell embryos (N = 482) were collected from superovulated wild type C57BL/6 female mice and cultured in microdrops over 5 days for the assessment of blastocyst development. PARTICIPANTS/MATERIALS, SETTING, METHODS Human tubal lavage specimens were processed for label-free mass spectrometry. Reported menstrual cycle day was confirmed by measuring serum hormones. Key protein targets in the ES phase were validated via immunoblot. The ES phase-specific increase in 14-3-3 zeta protein was confirmed via ELISA of conditioned media obtained from primary human Fallopian tube epithelial cell culture. A murine embryo assay was performed to investigate the impact of graduated concentrations of 14-3-3 zeta on the blastocyst development rate. MAIN RESULTS AND THE ROLE OF CHANCE Comparison of the ES and menstrual phase human tubal lavage proteomes revealed 74 differentially expressed proteins with enrichment of pathways and biological processes involved in the regulation of carbohydrate metabolism, oxidative stress and cell survival. The adapter-regulator protein 14-3-3 zeta was among the most significantly increased in the ES phase. Supplementation of embryo culture media with 14-3-3 zeta at concentrations tested did not significantly improve the murine blastocyst development. LIMITATIONS, REASONS FOR CAUTION Although select associations were recapitulated in the conditioned media from sex steroid exposed primary human tubal epithelial cells, cell culture represents an in-vitro approximation. Changes to embryo culture media, such as protein supplementation, must undergo rigorous preclinical safety testing prior to adoption for human use. WIDER IMPLICATIONS OF THE FINDINGS This study represents the first description of the human Fallopian tube lavage proteome across the menstrual cycle, revealing a unique proteomic signature during the ES phase. Although supplementation of culture media with 14-3-3 zeta at appropriate concentrations showed no significant impact on the murine blastocyst development rate, other biologically plausible candidate proteins for individual or high throughput testing strategies are identified. STUDY FUNDING/COMPETING INTEREST(S) This work was funded in part by an Army Medical Department Advanced Medical Technology Initiative grant from the United States Army Medical Research and Materiel Command's Telemedicine and Advanced Technology Research Center. There are no competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- D T Fujii
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Madigan Army Medical Center, Tacoma, WA 98431-1100, USA
| | - E Yohannes
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, WA 98431-1100, USA
| | - E D Por
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, WA 98431-1100, USA
| | - L Gillette
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, WA 98431-1100, USA
| | - R D Beesley
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Madigan Army Medical Center, Tacoma, WA 98431-1100, USA
| | - R J Heitmann
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Madigan Army Medical Center, Tacoma, WA 98431-1100, USA
| | - G E Chow
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Madigan Army Medical Center, Tacoma, WA 98431-1100, USA
| | - R O Burney
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Madigan Army Medical Center, Tacoma, WA 98431-1100, USA
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, WA 98431-1100, USA
| |
Collapse
|
11
|
Biological Applications for LC-MS-Based Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1336:17-29. [PMID: 34628625 DOI: 10.1007/978-3-030-77252-9_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Since its inception, liquid chromatography-mass spectrometry (LC-MS) has been continuously improved upon in many aspects, including instrument capabilities, sensitivity, and resolution. Moreover, the costs to purchase and operate mass spectrometers and liquid chromatography systems have decreased, thus increasing affordability and availability in sectors outside of academic and industrial research. Processing power has also grown immensely, cutting the time required to analyze samples, allowing more data to be feasibly processed, and allowing for standardized processing pipelines. As a result, proteomics via LC-MS has become popular in many areas of biological sciences, forging an important seat for itself in targeted and untargeted assays, pure and applied science, the laboratory, and the clinic. In this chapter, many of these applications of LC-MS-based proteomics and an outline of how they can be executed will be covered. Since the field of personalized medicine has matured alongside proteomics, it has also come to rely on various mass spectrometry methods and will be elaborated upon as well. As time goes on and mass spectrometry evolves, there is no doubt that its presence in these areas, and others, will only continue to grow.
Collapse
|
12
|
Riley NM, Bertozzi CR, Pitteri SJ. A Pragmatic Guide to Enrichment Strategies for Mass Spectrometry-Based Glycoproteomics. Mol Cell Proteomics 2020; 20:100029. [PMID: 33583771 PMCID: PMC8724846 DOI: 10.1074/mcp.r120.002277] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022] Open
Abstract
Glycosylation is a prevalent, yet heterogeneous modification with a broad range of implications in molecular biology. This heterogeneity precludes enrichment strategies that can be universally beneficial for all glycan classes. Thus, choice of enrichment strategy has profound implications on experimental outcomes. Here we review common enrichment strategies used in modern mass spectrometry-based glycoproteomic experiments, including lectins and other affinity chromatographies, hydrophilic interaction chromatography and its derivatives, porous graphitic carbon, reversible and irreversible chemical coupling strategies, and chemical biology tools that often leverage bioorthogonal handles. Interest in glycoproteomics continues to surge as mass spectrometry instrumentation and software improve, so this review aims to help equip researchers with the necessary information to choose appropriate enrichment strategies that best complement these efforts.
Collapse
Affiliation(s)
- Nicholas M Riley
- Department of Chemistry, Stanford University, Stanford, California, USA.
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, California, USA; Howard Hughes Medical Institute, Stanford, California, USA
| | - Sharon J Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, California, USA.
| |
Collapse
|
13
|
Xiao X, Xin C, Zhang Y, Yan J, Chen Z, Xu H, Liang M, Wu B, Fang F, Qiu W. Characterization of Odontogenic Differentiation from Human Dental Pulp Stem Cells Using TMT-Based Proteomic Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3871496. [PMID: 33490242 PMCID: PMC7789479 DOI: 10.1155/2020/3871496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/10/2020] [Accepted: 11/20/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND The repair of dental pulp injury relies on the odontogenic differentiation of dental pulp stem cells (DPSCs). To better understand the odontogenic differentiation of DPSCs and identify proteins involved in this process, tandem mass tags (TMTs) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) were applied to compare the proteomic profiles of induced and control DPSCs. METHODS The proteins expressed during osteogenic differentiation of human DPSCs were profiled using the TMT method combined with LC-MS/MS analysis. The identified proteins were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Then, a protein-protein interaction (PPI) network was constructed. Two selected proteins were confirmed by western blotting (WB) analysis. RESULTS A total of 223 proteins that were differentially expressed were identified. Among them, 152 proteins were significantly upregulated and 71 were downregulated in the odontogenic differentiation group compared with the control group. On the basis of biological processes in GO, the identified proteins were mainly involved in cellular processes, metabolic processes, and biological regulation, which are connected with the signaling pathways highlighted by KEGG pathway analysis. PPI networks showed that most of the differentially expressed proteins were implicated in physical or functional interaction. The protein expression levels of FBN1 and TGF-β2 validated by WB were consistent with the proteomic analysis. CONCLUSIONS This is the first proteomic analysis of human DPSC odontogenesis using a TMT method. We identified many new differentially expressed proteins that are potential targets for pulp-dentin complex regeneration and repair.
Collapse
Affiliation(s)
- Xijuan Xiao
- Yuncheng Stomatological Hospital, Yuncheng Stomatological Health School, South Section of Yuxi Road, Yuncheng 044000, China
| | - Caihong Xin
- Yuncheng Stomatological Hospital, Yuncheng Stomatological Health School, South Section of Yuxi Road, Yuncheng 044000, China
| | - Yuqin Zhang
- Yuncheng Stomatological Hospital, Yuncheng Stomatological Health School, South Section of Yuxi Road, Yuncheng 044000, China
| | - Jie Yan
- Yuncheng Stomatological Hospital, Yuncheng Stomatological Health School, South Section of Yuxi Road, Yuncheng 044000, China
| | - Zhao Chen
- Guangdong Provincial Key Laboratory of Oral Diseases, Guangzhou 510055, China
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Huiyong Xu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Min Liang
- Department of Periodontology, Guanghua School and Hospital of Stomatology and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
| | - Buling Wu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Fuchun Fang
- Guangdong Provincial Key Laboratory of Oral Diseases, Guangzhou 510055, China
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Wei Qiu
- Guangdong Provincial Key Laboratory of Oral Diseases, Guangzhou 510055, China
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| |
Collapse
|
14
|
Raghuraman BK, Hebbar S, Kumar M, Moon H, Henry I, Knust E, Shevchenko A. Absolute Quantification of Proteins in the Eye of Drosophila melanogaster. Proteomics 2020; 20:e1900049. [PMID: 32663363 DOI: 10.1002/pmic.201900049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/29/2020] [Indexed: 01/26/2023]
Abstract
Absolute (molar) quantification of proteins determines their molar ratios in complexes, networks, and metabolic pathways. MS Western workflow is employed to determine molar abundances of proteins potentially critical for morphogenesis and phototransduction (PT) in eyes of Drosophila melanogaster using a single chimeric 264 kDa protein standard that covers, in total, 197 peptides from 43 proteins. The majority of proteins are independently quantified with two to four proteotypic peptides with the coefficient of variation of less than 15%, better than 1000-fold dynamic range and sub-femtomole sensitivity. Here, the molar abundance of proteins of the PT machinery and of the rhabdomere, the photosensitive organelle, is determined in eyes of wild-type flies as well as in crumbs (crb) mutant eyes, which exhibit perturbed rhabdomere morphogenesis.
Collapse
Affiliation(s)
- Bharath Kumar Raghuraman
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, 01307, Germany
| | - Sarita Hebbar
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, 01307, Germany
| | - Mukesh Kumar
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, 01307, Germany
| | - HongKee Moon
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, 01307, Germany.,Centre for Systems Biology Dresden, Pfotenhauerstr. 108, Dresden, 01307, Germany
| | - Ian Henry
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, 01307, Germany.,Centre for Systems Biology Dresden, Pfotenhauerstr. 108, Dresden, 01307, Germany
| | - Elisabeth Knust
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, 01307, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, 01307, Germany
| |
Collapse
|
15
|
Quantitative mass spectrometry-based proteomics in the era of model-informed drug development: Applications in translational pharmacology and recommendations for best practice. Pharmacol Ther 2019; 203:107397. [DOI: 10.1016/j.pharmthera.2019.107397] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/29/2019] [Indexed: 02/08/2023]
|
16
|
Prasad B, Achour B, Artursson P, Hop CECA, Lai Y, Smith PC, Barber J, Wisniewski JR, Spellman D, Uchida Y, Zientek M, Unadkat JD, Rostami-Hodjegan A. Toward a Consensus on Applying Quantitative Liquid Chromatography-Tandem Mass Spectrometry Proteomics in Translational Pharmacology Research: A White Paper. Clin Pharmacol Ther 2019; 106:525-543. [PMID: 31175671 PMCID: PMC6692196 DOI: 10.1002/cpt.1537] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/22/2019] [Indexed: 12/18/2022]
Abstract
Quantitative translation of information on drug absorption, disposition, receptor engagement, and drug-drug interactions from bench to bedside requires models informed by physiological parameters that link in vitro studies to in vivo outcomes. To predict in vivo outcomes, biochemical data from experimental systems are routinely scaled using protein quantity in these systems and relevant tissues. Although several laboratories have generated useful quantitative proteomic data using state-of-the-art mass spectrometry, no harmonized guidelines exit for sample analysis and data integration to in vivo translation practices. To address this gap, a workshop was held on September 27 and 28, 2018, in Cambridge, MA, with 100 experts attending from academia, the pharmaceutical industry, and regulators. Various aspects of quantitative proteomics and its applications in translational pharmacology were debated. A summary of discussions and best practices identified by this expert panel are presented in this "White Paper" alongside unresolved issues that were outlined for future debates.
Collapse
Affiliation(s)
- Bhagwat Prasad
- Department of Pharmaceutics, University of Washington, Seattle, WA
| | - Brahim Achour
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | | | | | - Philip C Smith
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jill Barber
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK
| | - Jacek R Wisniewski
- Biochemical Proteomics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Daniel Spellman
- Pharmacokinetics, Pharmacodynamics & Drug Metabolism, Merck & Co., Inc., West Point, PA
| | - Yasuo Uchida
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK
- Certara UK Ltd. (Simcyp Division), 1 Concourse Way, Sheffield, UK
| |
Collapse
|