1
|
Kanaan H, Chapalain A, Chokr A, Doublet P, Gilbert C. Legionella pneumophila cell surface RtxA release by LapD/LapG and its role in virulence. BMC Microbiol 2024; 24:266. [PMID: 39026145 PMCID: PMC11264772 DOI: 10.1186/s12866-024-03395-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Legionella pneumophila is a Gram-negative intracellular bacillus and is the causative agent of a severe form of pneumonia called Legionnaires' disease which accounts for 2-9% of cases of community acquired pneumonia. It produces an extremely large protein belonging to the RTX (Repeats in ToXin) family, called RtxA, and we previously reported that RtxA is transported by a dedicated type 1 secretion system (T1SS) to the cell surface. RTX proteins have been shown to participate in the virulence or biofilm formation of various bacteria, the most studied models being the pore forming hemolysin A (HlyA) of Escherichia coli and the biofilm associated protein LapA of P. fluorescens. LapA localization depends on the enzymatic release by LapD/LapG complex activity. This study aimed to elucidate the dual localization (cell surface associated or released state) of L. pneumophila RTX protein (RtxA) and whether this released versus sequestered state of RtxA plays a role in L. pneumophila virulence. RESULTS The hereby work reveals that, in vitro, LapG periplasmic protease cleaves RtxA N-terminus in the middle of a di-alanine motif (position 108-109). Consistently, a strain lacking LapG protease maintains RtxA on the cell surface, whereas a strain lacking the c-di-GMP receptor LapD does not exhibit cell surface RtxA because of its continuous cleavage and release, as in the LapA-D-G model of Pseudomonas fluorescens. Interestingly, our data point out a key role of RtxA in enhancing the infection process of amoeba cells, regardless of its location (embedded or released); therefore, this may be the result of a secondary role of this surface protein. CONCLUSIONS This is the first experimental identification of the cleavage site within the RTX protein family. The primary role of RtxA in Legionella is still questionable as in many other bacterial species, hence it sounds reasonable to propose a major function in biofilm formation, promoting cell aggregation when RtxA is embedded in the outer membrane and facilitating biofilm dispersion in case of RtxA release. The role of RtxA in enhancing the infection process may be a result of its action on host cells (i.e., PDI interaction or pore-formation), and independently of its status (embedded or released).
Collapse
Affiliation(s)
- Hussein Kanaan
- Centre International de Recherche en Infectiologie (CIRI), Université Lyon 1, INSERM U1111, CNRS UMR5308, ENS, Lyon Bât. Rosalind Franklin, 50 avenue Tony Garnier, Lyon, 69007, France
- Research Laboratory of Microbiology (RLM), Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat Campus, Beirut, Lebanon
| | - Annelise Chapalain
- Centre International de Recherche en Infectiologie (CIRI), Université Lyon 1, INSERM U1111, CNRS UMR5308, ENS, Lyon Bât. Rosalind Franklin, 50 avenue Tony Garnier, Lyon, 69007, France
| | - Ali Chokr
- Research Laboratory of Microbiology (RLM), Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat Campus, Beirut, Lebanon
| | - Patricia Doublet
- Centre International de Recherche en Infectiologie (CIRI), Université Lyon 1, INSERM U1111, CNRS UMR5308, ENS, Lyon Bât. Rosalind Franklin, 50 avenue Tony Garnier, Lyon, 69007, France
| | - Christophe Gilbert
- Centre International de Recherche en Infectiologie (CIRI), Université Lyon 1, INSERM U1111, CNRS UMR5308, ENS, Lyon Bât. Rosalind Franklin, 50 avenue Tony Garnier, Lyon, 69007, France.
| |
Collapse
|
2
|
Liang J, Faucher SP. Interactions between chaperone and energy storage networks during the evolution of Legionella pneumophila under heat shock. PeerJ 2024; 12:e17197. [PMID: 38708341 PMCID: PMC11067923 DOI: 10.7717/peerj.17197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/14/2024] [Indexed: 05/07/2024] Open
Abstract
Waterborne transmission of the bacterium Legionella pneumophila has emerged as a major cause of severe nosocomial infections of major public health impact. The major route of transmission involves the uptake of aerosolized bacteria, often from the contaminated hot water systems of large buildings. Public health regulations aimed at controlling the mesophilic pathogen are generally concerned with acute pasteurization and maintaining high temperatures at the heating systems and throughout the plumbing of hot water systems, but L. pneumophila is often able to survive these treatments due to both bacterium-intrinsic and environmental factors. Previous work has established an experimental evolution system to model the observations of increased heat resistance in repeatedly but unsuccessfully pasteurized L. pneumophila populations. Here, we show rapid fixation of novel alleles in lineages selected for resistance to heat shock and shifts in mutational profile related to increases in the temperature of selection. Gene-level and nucleotide-level parallelisms between independently-evolving lineages show the centrality of the DnaJ/DnaK chaperone system in the heat resistance of L. pneumophila. Inference of epistatic interactions through reverse genetics shows an unexpected interaction between DnaJ/DnaK and the polyhydroxybutyrate-accumulation energy storage mechanism used by the species to survive long-term starvation in low-nutrient environments.
Collapse
Affiliation(s)
- Jeffrey Liang
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Sebastien P. Faucher
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
3
|
Lin JD, Stogios PJ, Abe KT, Wang A, MacPherson J, Skarina T, Gingras AC, Savchenko A, Ensminger AW. Functional diversification despite structural congruence in the HipBST toxin-antitoxin system of Legionella pneumophila. mBio 2023; 14:e0151023. [PMID: 37819088 PMCID: PMC10653801 DOI: 10.1128/mbio.01510-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/29/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE Toxin-antitoxin (TA) systems are parasitic genetic elements found in almost all bacterial genomes. They are exchanged horizontally between cells and are typically poorly conserved across closely related strains and species. Here, we report the characterization of a tripartite TA system in the bacterial pathogen Legionella pneumophila that is highly conserved across Legionella species genomes. This system (denoted HipBSTLp) is a distant homolog of the recently discovered split-HipA system in Escherichia coli (HipBSTEc). We present bioinformatic, molecular, and structural analyses of the divergence between these two systems and the functionality of this newly described TA system family. Furthermore, we provide evidence to refute previous claims that the toxin in this system (HipTLp) possesses bifunctionality as an L. pneumophila virulence protein. Overall, this work expands our understanding of the split-HipA system architecture and illustrates the potential for undiscovered biology in these abundant genetic elements.
Collapse
Affiliation(s)
- Jordan D. Lin
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Peter J. Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Kento T. Abe
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Avril Wang
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - John MacPherson
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Tatiana Skarina
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Center for Structural Genomics of Infectious Diseases (CSGID), University of Calgary, Calgary, Alberta, Canada
| | - Alexander W. Ensminger
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Mobile Element Integration Reveals a Chromosome Dimer Resolution System in Legionellales. mBio 2022; 13:e0217122. [PMID: 36314797 PMCID: PMC9765430 DOI: 10.1128/mbio.02171-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In bacteria, the mechanisms used to repair DNA lesions during genome replication include homologous recombination between sister chromosomes. This can lead to the formation of chromosome dimers if an odd number of crossover events occurs. The dimers must be resolved before cell separation to ensure genomic stability and cell viability. Dimer resolution is achieved by the broadly conserved dif/Xer system, which catalyzes one additional crossover event immediately prior to cell separation. While dif/Xer systems have been characterized or predicted in the vast majority of proteobacteria, no homologs to dif or xer have been identified in the order Legionellales. Here, we report the discovery of a distinct single-recombinase dif/Xer system in the intracellular pathogen Legionella pneumophila. The dif site was uncovered by our analysis of Legionella mobile element-1 (LME-1), which harbors a dif site mimic and integrates into the L. pneumophila genome via site-specific recombination. We demonstrate that lpg1867 (here named xerL) encodes a tyrosine recombinase that is necessary and sufficient for catalyzing recombination at the dif site and that deletion of dif or xerL causes filamentation along with extracellular and intracellular growth defects. We show that the dif/XerL system is present throughout Legionellales and that Coxiella burnetii XerL and its cognate dif site can functionally substitute for the native system in L. pneumophila. Finally, we describe an unexpected link between C. burnetii dif/Xer and the maintenance of its virulence plasmids. IMPORTANCE The maintenance of circular chromosomes depends on the ability to resolve aberrant chromosome dimers after they form. In most proteobacteria, broadly conserved Xer recombinases catalyze single crossovers at short, species-specific dif sites located near the replication terminus. Chromosomal dimerization leads to the formation of two copies of dif within the same molecule, leading to rapid site-specific recombination and conversion back into chromosome monomers. The apparent absence of chromosome dimer resolution mechanisms in Legionellales has been a mystery to date. By studying a phage-like mobile genetic element, LME-1, we have identified a previously unknown single-recombinase dif/Xer system that is not only widespread across Legionellales but whose activity is linked to virulence in two important human pathogens.
Collapse
|
5
|
Allombert J, Jaboulay C, Michard C, Andréa C, Charpentier X, Vianney A, Doublet P. Deciphering Legionella effector delivery by Icm/Dot secretion system reveals a new role for c-di-GMP signaling. J Mol Biol 2021; 433:166985. [PMID: 33845084 DOI: 10.1016/j.jmb.2021.166985] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/22/2021] [Accepted: 03/31/2021] [Indexed: 11/19/2022]
Abstract
Secretion of bacterial effector proteins into host cells plays a key role in bacterial virulence. Yet, the dynamics of the secretion systems activity remains poorly understood, especially when machineries deal with the export of numerous effectors. We address the question of multi-effector secretion by focusing on the Legionella pneumophila Icm/Dot T4SS that translocates a record number of 300 effectors. We set up a kinetic translocation assay, based on the β-lactamase translocation reporter system combined with the effect of the protonophore CCCP. When used for translocation analysis of Icm/Dot substrates constitutively produced by L. pneumophila, this assay allows a fine monitoring of the secretion activity of the T4SS, independently of the expression control of the effectors. We observed that effectors are translocated with a specific timing, suggesting a control of their docking/translocation by the T4SS. Their delivery is accurately organized to allow effective manipulation of the host cell, as exemplified by the sequential translocation of effectors targeting Rab1, namely SidM/DrrA, LidA, LepB. Remarkably, the timed delivery of effectors does not depend only on their interaction with chaperone proteins but implies cyclic-di-GMP signaling, as the diguanylate cyclase Lpl0780/Lpp0809, contributes to the timing of translocation.
Collapse
Affiliation(s)
- J Allombert
- CIRI, Centre International de Recherche en Infectiologie, (Team: Legionella pathogenesis), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - C Jaboulay
- CIRI, Centre International de Recherche en Infectiologie, (Team: Legionella pathogenesis), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - C Michard
- CIRI, Centre International de Recherche en Infectiologie, (Team: Legionella pathogenesis), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - C Andréa
- CIRI, Centre International de Recherche en Infectiologie, (Team: Legionella pathogenesis), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - X Charpentier
- CIRI, Centre International de Recherche en Infectiologie, (Team: Horigene), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - A Vianney
- CIRI, Centre International de Recherche en Infectiologie, (Team: Legionella pathogenesis), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France.
| | - P Doublet
- CIRI, Centre International de Recherche en Infectiologie, (Team: Legionella pathogenesis), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France.
| |
Collapse
|