1
|
Saleem F, Atrache R, Jiang JL, Tran KL, Li E, Paschos A, Edge TA, Schellhorn HE. Characterization of Taxonomic and Functional Dynamics Associated with Harmful Algal Bloom Formation in Recreational Water Ecosystems. Toxins (Basel) 2024; 16:263. [PMID: 38922157 PMCID: PMC11209277 DOI: 10.3390/toxins16060263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
Harmful algal bloom (HAB) formation leads to the eutrophication of water ecosystems and may render recreational lakes unsuitable for human use. We evaluated the applicability and comparison of metabarcoding, metagenomics, qPCR, and ELISA-based methods for cyanobacteria/cyanotoxin detection in bloom and non-bloom sites for the Great Lakes region. DNA sequencing-based methods robustly identified differences between bloom and non-bloom samples (e.g., the relative prominence of Anabaena and Planktothrix). Shotgun sequencing strategies also identified the enrichment of metabolic genes typical of cyanobacteria in bloom samples, though toxin genes were not detected, suggesting deeper sequencing or PCR methods may be needed to detect low-abundance toxin genes. PCR and ELISA indicated microcystin levels and microcystin gene copies were significantly more abundant in bloom sites. However, not all bloom samples were positive for microcystin, possibly due to bloom development by non-toxin-producing species. Additionally, microcystin levels were significantly correlated (positively) with microcystin gene copy number but not with total cyanobacterial 16S gene copies. In summary, next-generation sequencing-based methods can identify specific taxonomic and functional targets, which can be used for absolute quantification methods (qPCR and ELISA) to augment conventional water monitoring strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Herb E. Schellhorn
- Department of Biology, McMaster University, 1280 Main St W., Hamilton, ON L8S 4L8, Canada; (F.S.); (R.A.); (J.L.J.); (K.L.T.); (E.L.); (A.P.); (T.A.E.)
| |
Collapse
|
2
|
Saleem F, Li E, Edge TA, Tran KL, Schellhorn HE. Identification of potential microbial risk factors associated with fecal indicator exceedances at recreational beaches. ENVIRONMENTAL MICROBIOME 2024; 19:4. [PMID: 38225663 PMCID: PMC10790499 DOI: 10.1186/s40793-024-00547-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024]
Abstract
BACKGROUND Fecal bacterial densities are proxy indicators of beach water quality, and beach posting decisions are made based on Beach Action Value (BAV) exceedances for a beach. However, these traditional beach monitoring methods do not reflect the full extent of microbial water quality changes associated with BAV exceedances at recreational beaches (including harmful cyanobacteria). This proof of concept study evaluates the potential of metagenomics for comprehensively assessing bacterial community changes associated with BAV exceedances compared to non-exceedances for two urban beaches and their adjacent river water sources. RESULTS Compared to non-exceedance samples, BAV exceedance samples exhibited higher alpha diversity (diversity within the sample) that could be further differentiated into separate clusters (Beta-diversity). For Beach A, Cyanobacterial sequences (resolved as Microcystis and Pseudanabaena at genus level) were significantly more abundant in BAV non-exceedance samples. qPCR validation supported the Cyanobacterial abundance results from metagenomic analysis and also identified saxitoxin genes in 50% of the non-exceedance samples. Microcystis sp and saxitoxin gene sequences were more abundant on non-exceedance beach days (when fecal indicator data indicated the beach should be open for water recreational purposes). For BAV exceedance days, Fibrobacteres, Pseudomonas, Acinetobacter, and Clostridium sequences were significantly more abundant (and positively correlated with fecal indicator densities) for Beach A. For Beach B, Spirochaetes (resolved as Leptospira on genus level) Burkholderia and Vibrio sequences were significantly more abundant in BAV exceedance samples. Similar bacterial diversity and abundance trends were observed for river water sources compared to their associated beaches. Antibiotic Resistance Genes (ARGs) were also consistently detected at both beaches. However, we did not observe a significant difference or correlation in ARGs abundance between BAV exceedance and non-exceedance samples. CONCLUSION This study provides a more comprehensive analysis of bacterial community changes associated with BAV exceedances for recreational freshwater beaches. While there were increases in bacterial diversity and some taxa of potential human health concern associated with increased fecal indicator densities and BAV exceedances (e.g. Pseudomonas), metagenomics analyses also identified other taxa of potential human health concern (e.g. Microcystis) associated with lower fecal indicator densities and BAV non-exceedances days. This study can help develop more targeted beach monitoring strategies and beach-specific risk management approaches.
Collapse
Affiliation(s)
- Faizan Saleem
- Department of Biology, McMaster University, 1280 Main St W., Hamilton, ON, L8S 4L8, Canada
| | - Enze Li
- Department of Biology, McMaster University, 1280 Main St W., Hamilton, ON, L8S 4L8, Canada
| | - Thomas A Edge
- Department of Biology, McMaster University, 1280 Main St W., Hamilton, ON, L8S 4L8, Canada
| | - Kevin L Tran
- Department of Biology, McMaster University, 1280 Main St W., Hamilton, ON, L8S 4L8, Canada
| | - Herb E Schellhorn
- Department of Biology, McMaster University, 1280 Main St W., Hamilton, ON, L8S 4L8, Canada.
| |
Collapse
|
3
|
Martin A, Jauvain M, Bergsten E, Demontant V, Lehours P, Barau C, Levy M, Rodriguez C, Sobhani I, Amiot A. Gastric microbiota in patients with gastric MALT lymphoma according to Helicobacter pylori infection. Clin Res Hepatol Gastroenterol 2024; 48:102247. [PMID: 37981222 DOI: 10.1016/j.clinre.2023.102247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Gastric Mucosa Associated Lymphoid Tissue lymphoma (GML) development is triggered by Helicobacter pylori (H. pylori) infection. Little is known about the impact of H. pylori infection on gastric microbiota. METHODS The gastric microbiota was retrospectively investigated using 16S rRNA gene sequencing in 32 patients with untreated GML (10 H. pylori-positive and 22 H. pylori-negative), 23 with remitted and 18 refractory GML and 35 controls. Differences in microbial diversity, bacterial composition and taxonomic repartition were assessed. RESULTS There was no change in diversity and bacterial composition between GML and control patients taking into account H. pylori status. Differential taxa analysis identified specific changes associated with H. pylori-negative GML: the abundances of Actinobacillus, Lactobacillus and Chryseobacterium were increased while the abundances of Veillonella, Atopobium, Leptotrichia, Catonella, Filifactor and Escherichia_Shigella were increased in control patients. In patients with remitted GML, the genera Haemophilus and Moraxella were significantly more abundant than in refractory patients, while Atopobium and Actinomyces were significantly more abundant in refractory patients. CONCLUSION Detailed analysis of the gastric microbiota revealed significant changes in the bacterial composition of the gastric mucosa in patients with GML that may have a role in gastric lymphomagenesis but not any new pathobionts.
Collapse
Affiliation(s)
- Antoine Martin
- Department of Gastroenterology, Henri-Mondor University Hospital, Universite Paris Est Creteil, AP-HP, EA7375, 51, Avenue du Marechal de Lattre de Tassigny CRETEIL, Creteil F-94010, France
| | - Marine Jauvain
- UMR1312 Bordeaux Institute of Cancer, BRIC, Université de Bordeaux, Bordeaux 33076, France; French National Reference Center for Campylobacters and Helicobacters, Bordeaux Hospital University Center, Bordeaux, France
| | - Emma Bergsten
- Department of Gastroenterology, Henri-Mondor University Hospital, Universite Paris Est Creteil, AP-HP, EA7375, 51, Avenue du Marechal de Lattre de Tassigny CRETEIL, Creteil F-94010, France
| | - Vanessa Demontant
- Genomics Platform and Virology Unit, Henri-Mondor University Hospital, AP-HP, Institut Mondor de Recherche Biomédicale, Universite Paris Est Creteil, INSERM U955, Créteil F-94010 France
| | - Philippe Lehours
- UMR1312 Bordeaux Institute of Cancer, BRIC, Université de Bordeaux, Bordeaux 33076, France; French National Reference Center for Campylobacters and Helicobacters, Bordeaux Hospital University Center, Bordeaux, France
| | - Caroline Barau
- Plateforme de Ressources Biologique, Henri-Mondor University Hospital, AP-HP, University Paris Est Creteil, F-94010, France
| | - Michael Levy
- Department of Gastroenterology, Henri-Mondor University Hospital, Universite Paris Est Creteil, AP-HP, EA7375, 51, Avenue du Marechal de Lattre de Tassigny CRETEIL, Creteil F-94010, France
| | - Christophe Rodriguez
- Genomics Platform and Virology Unit, Henri-Mondor University Hospital, AP-HP, Institut Mondor de Recherche Biomédicale, Universite Paris Est Creteil, INSERM U955, Créteil F-94010 France
| | - Iradj Sobhani
- Department of Gastroenterology, Henri-Mondor University Hospital, Universite Paris Est Creteil, AP-HP, EA7375, 51, Avenue du Marechal de Lattre de Tassigny CRETEIL, Creteil F-94010, France
| | - Aurelien Amiot
- Department of Gastroenterology, Henri-Mondor University Hospital, Universite Paris Est Creteil, AP-HP, EA7375, 51, Avenue du Marechal de Lattre de Tassigny CRETEIL, Creteil F-94010, France.
| |
Collapse
|
4
|
Bergsten E, Mestivier D, Donnadieu F, Pedron T, Barau C, Meda LT, Mettouchi A, Lemichez E, Gorgette O, Chamaillard M, Vaysse A, Volant S, Doukani A, Sansonetti PJ, Sobhani I, Nigro G. Parvimonas micra, an oral pathobiont associated with colorectal cancer, epigenetically reprograms human colonocytes. Gut Microbes 2023; 15:2265138. [PMID: 37842920 PMCID: PMC10580862 DOI: 10.1080/19490976.2023.2265138] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023] Open
Abstract
Recently, an intestinal dysbiotic microbiota with enrichment in oral cavity bacteria has been described in colorectal cancer (CRC) patients. Here, we characterize and investigate one of these oral pathobionts, the Gram-positive anaerobic coccus Parvimonas micra. We identified two phylotypes (A and B) exhibiting different phenotypes and adhesion capabilities. We observed a strong association of phylotype A with CRC, with its higher abundance in feces and in tumoral tissue compared with the normal homologous colonic mucosa, which was associated with a distinct methylation status of patients. By developing an in vitro hypoxic co-culture system of human primary colonic cells with anaerobic bacteria, we show that P. micra phylotype A alters the DNA methylation profile promoters of key tumor-suppressor genes, oncogenes, and genes involved in epithelial-mesenchymal transition. In colonic mucosa of CRC patients carrying P. micra phylotype A, we found similar DNA methylation alterations, together with significant enrichment of differentially expressed genes in pathways involved in inflammation, cell adhesion, and regulation of actin cytoskeleton, providing evidence of P. micra's possible role in the carcinogenic process.
Collapse
Affiliation(s)
- Emma Bergsten
- Unité de Pathogénie Microbienne Moléculaire, INSERM U1202, Institut Pasteur, Paris, France
- Équipe universitaire EC2M3-EA7375, Université Paris- Est (UPEC), Créteil, France
| | - Denis Mestivier
- Équipe universitaire EC2M3-EA7375, Université Paris- Est (UPEC), Créteil, France
- Plateforme de Bio-informatique, Institut Mondor de Recherche Biomédicale (IMRB/INSERM U955), Université Paris-Est, Créteil, France
| | - Francoise Donnadieu
- Unité de Pathogénie Microbienne Moléculaire, INSERM U1202, Institut Pasteur, Paris, France
| | - Thierry Pedron
- Unité de Pathogénie Microbienne Moléculaire, INSERM U1202, Institut Pasteur, Paris, France
- Unité Bactériophage, Bactérie, Hôte, Institut Pasteur, Paris, France
| | - Caroline Barau
- Plateforme de Ressources Biologiques, CHU Henri Mondor Assistance Publique Hôpitaux de Paris (APHP), Créteil, France
| | - Landry Tsoumtsa Meda
- Unité des Toxines Bactériennes, Université Paris Cité, CNRS UMR6047, INSERM U1306, Institut Pasteur, Paris, France
| | - Amel Mettouchi
- Unité des Toxines Bactériennes, Université Paris Cité, CNRS UMR6047, INSERM U1306, Institut Pasteur, Paris, France
| | - Emmanuel Lemichez
- Unité des Toxines Bactériennes, Université Paris Cité, CNRS UMR6047, INSERM U1306, Institut Pasteur, Paris, France
| | - Olivier Gorgette
- Plateforme de Bio-Imagerie Ultrastructurale, Institut Pasteur, Université Paris Cité, Paris, France
| | - Mathias Chamaillard
- Laboratory of Cell Physiology, INSERM U1003, University of Lille, Lille, France
| | - Amaury Vaysse
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, Paris, France
| | - Stevenn Volant
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, Paris, France
| | - Abiba Doukani
- Sorbonne Université, Inserm, Unité Mixte de Service Production et Analyse de données en Sciences de la Vie et en Santé, Paris, France
| | - Philippe J Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, INSERM U1202, Institut Pasteur, Paris, France
- Chaire de Microbiologie et Maladies Infectieuses, Collège de France, Paris, France
| | - Iradj Sobhani
- Équipe universitaire EC2M3-EA7375, Université Paris- Est (UPEC), Créteil, France
- Service de Gastroentérologie, CHU Henri Mondor Assistance Publique Hôpitaux de Paris (APHP), Créteil, France
| | - Giulia Nigro
- Unité de Pathogénie Microbienne Moléculaire, INSERM U1202, Institut Pasteur, Paris, France
- Microenvironment and Immunity Unit, INSERM U1224, Institut Pasteur, Paris, France
| |
Collapse
|
5
|
De-la-Vega-Camarillo E, Hernández-García JA, Villa-Tanaca L, Hernández-Rodríguez C. Unlocking the hidden potential of Mexican teosinte seeds: revealing plant growth-promoting bacterial and fungal biocontrol agents. FRONTIERS IN PLANT SCIENCE 2023; 14:1247814. [PMID: 37860235 PMCID: PMC10582567 DOI: 10.3389/fpls.2023.1247814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/15/2023] [Indexed: 10/21/2023]
Abstract
The bacterial component of plant holobiont maintains valuable interactions that contribute to plants' growth, adaptation, stress tolerance, and antagonism to some phytopathogens. Teosinte is the grass plant recognized as the progenitor of modern maize, domesticated by pre-Hispanic civilizations around 9,000 years ago. Three teosinte species are recognized: Zea diploperennis, Zea perennis, and Zea mays. In this work, the bacterial diversity of three species of Mexican teosinte seeds was explored by massive sequencing of 16S rRNA amplicons. Streptomyces, Acinetobacter, Olivibacter, Erwinia, Bacillus, Pseudomonas, Cellvibrio, Achromobacter, Devosia, Lysobacter, Sphingopyxis, Stenotrophomonas, Ochrobactrum, Delftia, Lactobacillus, among others, were the bacterial genera mainly represented. The bacterial alpha diversity in the seeds of Z. diploperennis was the highest, while the alpha diversity in Z. mays subsp. mexicana race was the lowest observed among the species and races. The Mexican teosintes analyzed had a core bacteriome of 38 bacterial genera, including several recognized plant growth promoters or fungal biocontrol agents such as Agrobacterium, Burkholderia, Erwinia, Lactobacillus, Ochrobactrum, Paenibacillus, Pseudomonas, Sphingomonas, Streptomyces, among other. Metabolic inference analysis by PICRUSt2 of bacterial genera showed several pathways related to plant growth promotion (PGP), biological control, and environmental adaptation. The implications of these findings are far-reaching, as they highlight the existence of an exceptional bacterial germplasm reservoir teeming with potential plant growth promotion bacteria (PGPB). This reserve holds the key to cultivating innovative bioinoculants and formidable fungal antagonistic strains, thereby paving the way for a more sustainable and eco-friendly approach to agriculture. Embracing these novel NGS-based techniques and understanding the profound impact of the vertical transference of microorganisms from seeds could revolutionize the future of agriculture and develop a new era of symbiotic harmony between plants and microbes.
Collapse
Affiliation(s)
| | | | | | - César Hernández-Rodríguez
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
6
|
Ahmad N, Ritz M, Calchera A, Otte J, Schmitt I, Brueck T, Mehlmer N. Biosynthetic Potential of Hypogymnia Holobionts: Insights into Secondary Metabolite Pathways. J Fungi (Basel) 2023; 9:546. [PMID: 37233257 PMCID: PMC10219277 DOI: 10.3390/jof9050546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Lichens are symbiotic associations consisting of a photobiont (algae or cyanobacteria) and a mycobiont (fungus). They are known to produce a variety of unique secondary metabolites. To access this biosynthetic potential for biotechnological applications, deeper insights into the biosynthetic pathways and corresponding gene clusters are necessary. Here we provide a comprehensive view of the biosynthetic gene clusters of all organisms comprising a lichen thallus: fungi, green algae, and bacteria. We present two high-quality PacBio metagenomes, in which we identified a total of 460 biosynthetic gene clusters. Lichen mycobionts yielded 73-114 clusters, other lichen associated ascomycetes 8-40, green algae of the genus Trebouxia 14-19, and lichen-associated bacteria 101-105 clusters. The mycobionts contained mainly T1PKSs, followed by NRPSs, and terpenes; Trebouxia reads harbored mainly clusters linked to terpenes, followed by NRPSs and T3PKSs. Other lichen-associated ascomycetes and bacteria contained a mix of diverse biosynthetic gene clusters. In this study, we identified for the first time the biosynthetic gene clusters of entire lichen holobionts. The yet untapped biosynthetic potential of two species of the genus Hypogymnia is made accessible for further research.
Collapse
Affiliation(s)
- Nadim Ahmad
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Manfred Ritz
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Anjuli Calchera
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Jürgen Otte
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany
| | - Thomas Brueck
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Norbert Mehlmer
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| |
Collapse
|
7
|
Palatini U, Alfano N, Carballar RL, Chen XG, Delatte H, Bonizzoni M. Virome and nrEVEome diversity of Aedes albopictus mosquitoes from La Reunion Island and China. Virol J 2022; 19:190. [DOI: 10.1186/s12985-022-01918-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
Background
Aedes albopictus is a public health threat for its worldwide spread and ability to transmit arboviruses. Understanding mechanisms of mosquito immunity can provide new tools to control arbovirus spread. The genomes of Aedes mosquitoes contain hundreds of nonretroviral endogenous viral elements (nrEVEs), which are enriched in piRNA clusters and produce piRNAs, with the potential to target cognate viruses. Recently, one nrEVE was shown to limit cognate viral infection through nrEVE-derived piRNAs. These findings suggest that nrEVEs constitute an archive of past viral infection and that the landscape of viral integrations may be variable across populations depending on their viral exposure.
Methods
We used bioinformatics and molecular approaches to identify known and novel (i.e. absent in the reference genome) viral integrations in the genome of wild collected Aedes albopictus mosquitoes and characterize their virome.
Results
We showed that the landscape of viral integrations is dynamic with seven novel viral integrations being characterized, but does not correlate with the virome, which includes both viral species known and unknown to infect mosquitoes. However, the small RNA coverage profile of nrEVEs and the viral genomic contigs we identified confirmed an interaction among these elements and the piRNA and siRNA pathways in mosquitoes.
Conclusions
Mosquitoes nrEVEs have been recently described as a new form of heritable, sequence-specific mechanism of antiviral immunity. Our results contribute to understanding the dynamic distribution of nrEVEs in the genomes of wild Ae. albopictus and their interaction with mosquito viruses.
Collapse
|
8
|
Broman E, Izabel-Shen D, Rodríguez-Gijón A, Bonaglia S, Garcia SL, Nascimento FJA. Microbial functional genes are driven by gradients in sediment stoichiometry, oxygen, and salinity across the Baltic benthic ecosystem. MICROBIOME 2022; 10:126. [PMID: 35965333 PMCID: PMC9377124 DOI: 10.1186/s40168-022-01321-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/05/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND Microorganisms in the seafloor use a wide range of metabolic processes, which are coupled to the presence of functional genes within their genomes. Aquatic environments are heterogenous and often characterized by natural physiochemical gradients that structure these microbial communities potentially changing the diversity of functional genes and its associated metabolic processes. In this study, we investigated spatial variability and how environmental variables structure the diversity and composition of benthic functional genes and metabolic pathways across various fundamental environmental gradients. We analyzed metagenomic data from sediment samples, measured related abiotic data (e.g., salinity, oxygen and carbon content), covering 59 stations spanning 1,145 km across the Baltic Sea. RESULTS The composition of genes and microbial communities were mainly structured by salinity plus oxygen, and the carbon to nitrogen (C:N) ratio for specific metabolic pathways related to nutrient transport and carbon metabolism. Multivariate analyses indicated that the compositional change in functional genes was more prominent across environmental gradients compared to changes in microbial taxonomy even at genus level, and indicate functional diversity adaptation to local environments. Oxygen deficient areas (i.e., dead zones) were more different in gene composition when compared to oxic sediments. CONCLUSIONS This study highlights how benthic functional genes are structured over spatial distances and by environmental gradients and resource availability, and suggests that changes in, e.g., oxygenation, salinity, and carbon plus nitrogen content will influence functional metabolic pathways in benthic habitats. Video Abstract.
Collapse
Affiliation(s)
- Elias Broman
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| | - Dandan Izabel-Shen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Alejandro Rodríguez-Gijón
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| | - Stefano Bonaglia
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Sarahi L. Garcia
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| | - Francisco J. A. Nascimento
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| |
Collapse
|
9
|
Prediction of Genes That Function in Methanogenesis and CO 2 Pathways in Extremophiles. Microorganisms 2021; 9:microorganisms9112211. [PMID: 34835337 PMCID: PMC8621995 DOI: 10.3390/microorganisms9112211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/04/2022] Open
Abstract
Gaet’ale (GAL) and Mud’ara (MUP) are two hypersaline ponds located in the Danakil Depression recharged by underground water from the surrounding highlands. These two ponds have different pH, salinity, and show variation in the concentration of many ionic components. Metagenomic analysis concludes that GAL is dominated by bacteria as in the case of the other hypersaline and acidic ponds in the Danakil Depression. However, Archaea dominated the ponds of MUP. In the current study, the application of SEED and KEGG helped to map the ordered steps of specific enzyme catalyzed reaction in converting CO2 into cell products. We predict that highly efficient and light-independent carbon fixation involving phosphoenolpyruvate carboxylase takes place in MUP. On the contrary, genes encoding enzymes involved in hydrogenotrophic and acetoclastic methanogenesis appeared solely in ponds of GAL, implying the biological source of the hazardous methane gas in that environment. Based on the investigation of the sources of the genes of interest, it is clear that cooperative interactions between members of the two communities and syntrophic metabolism is the main strategy adapted to utilize inorganic carbon as a carbon source in both MUP and GAL. This insight can be used to design biotechnological applications of microbial communities in production of methane biogas or to minimize CO2 emissions.
Collapse
|
10
|
Characterization of biliary microbiota dysbiosis in extrahepatic cholangiocarcinoma. PLoS One 2021; 16:e0247798. [PMID: 33690612 PMCID: PMC7943025 DOI: 10.1371/journal.pone.0247798] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/12/2021] [Indexed: 12/11/2022] Open
Abstract
Extrahepatic cholangiocarcinoma (CCA) accounts for 3% of digestive cancers. The role of biliary microbiota as an environment-related modulator has been scarcely investigated in CCA, and the putative impact of associated diseases has not been yet assessed. We characterized the biliary microbiota in CCA patients in order to identify a specific CCA-related dysbiosis. The biliary effluents were collected through an endoscopic retrograde pancreatic cholangiography (ERCP) examination involving 28 CCA and 47 patients with gallstones, herein considered as controls. The biliary effluents were submitted to bacterial DNA extraction and 16S rRNA sequencing, using Illumina technology. Overall, 32% of CCA and 22% of controls displayed another associated disease, such as diabetes, pancreatitis, inflammatory bowel disease, or primary sclerosing cholangitis. Such associated diseases were considered in the comparisons that were made. Principal coordinate analysis (PCoA) detected a significant disparity of biliary microbiota composition between CCA patients and controls without an associated disease. Amongst the most abundant phyla, Proteobacteria did not significantly differ between CCA patients and controls, whereas Firmicutes levels were lower and Bacteroidetes higher in CCAs’ biliary microbiota than in the controls’ microbiota. The most abundant genera were Enterococcus, Streptococcus, Bacteroides, Klebsiella, and Pyramidobacter in CCA’s biliary microbiota. Additionally, levels of Bacteroides, Geobacillus, Meiothermus, and Anoxybacillus genera were significantly higher in CCA patients’ biliary microbiota, without an associated disease, in comparison with controls. A specific CCA-related dysbiosis was identified as compared to controls independently from associated diseases. This suggests that a microorganism community may be involved in CCA pathogenesis.
Collapse
|
11
|
In silico determination of nitrogen metabolism in microbes from extreme conditions using metagenomics. Arch Microbiol 2021; 203:2521-2540. [PMID: 33677634 DOI: 10.1007/s00203-021-02227-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/21/2020] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
The acid ponds of the Danakil Depression in northern Ethiopia are polyextreme environments that exceed the normal physicochemical limits of pH, salinity, ion content, and temperature. We tested for the occurrence of DNA-based life in this environment using Metagenomic Shotgun DNA sequencing approaches. The obtained sequences were examined by the bioinformatic tools MetaSpades, DIAMOND and MEGAN 6-CE, and we were able to bin more than 90% of the metagenomics contigs of Dallol and Black Water to the Bacteria domain, and to the Proteobacteria phylum. Predictions of gene function based on SEED disclosed the presence of different nutrient cycles in the acid ponds. For this study, we focused on partial or completely sequenced genes involved in nitrogen metabolism. The KEGG nitrogen metabolism pathway mapping results for both acid ponds showed that all the predicted genes are involved directly or indirectly in the assimilation of ammonia and no dissimilation or nitrification process was identified. Furthermore, the deduced nitrogen fixation in the two acid ponds based on SEED classification indicated the presence of different sets of nitrogen fixing (nif) genes for biosynthesis and maturation of nitrogenase. Based on the in silico analysis, the predicted proteins involved in nitrogen fixation, especially the cysteine desulfurase and [4Fe-4S] ferredoxin, from both acid ponds are unique with less than 80% sequence similarity to the next closest protein sequence. Considering the extremity of the environmental conditions of the two acid ponds in the Danakil depression, this metagenomics dataset can add to the study of unique gene functions in nitrogen metabolism that enable thriving biocommunities in hypersaline and highly acidic conditions.
Collapse
|
12
|
Gong G, Zhou S, Luo R, Gesang Z, Suolang S. Metagenomic insights into the diversity of carbohydrate-degrading enzymes in the yak fecal microbial community. BMC Microbiol 2020; 20:302. [PMID: 33036549 PMCID: PMC7547465 DOI: 10.1186/s12866-020-01993-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/01/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Yaks are able to utilize the gastrointestinal microbiota to digest plant materials. Although the cellulolytic bacteria in the yak rumen have been reported, there is still limited information on the diversity of the major microorganisms and putative carbohydrate-metabolizing enzymes for the degradation of complex lignocellulosic biomass in its gut ecosystem. RESULTS Here, this study aimed to decode biomass-degrading genes and genomes in the yak fecal microbiota using deep metagenome sequencing. A comprehensive catalog comprising 4.5 million microbial genes from the yak feces were established based on metagenomic assemblies from 92 Gb sequencing data. We identified a full spectrum of genes encoding carbohydrate-active enzymes, three-quarters of which were assigned to highly diversified enzyme families involved in the breakdown of complex dietary carbohydrates, including 120 families of glycoside hydrolases, 25 families of polysaccharide lyases, and 15 families of carbohydrate esterases. Inference of taxonomic assignments to the carbohydrate-degrading genes revealed the major microbial contributors were Bacteroidaceae, Ruminococcaceae, Rikenellaceae, Clostridiaceae, and Prevotellaceae. Furthermore, 68 prokaryotic genomes were reconstructed and the genes encoding glycoside hydrolases involved in plant-derived polysaccharide degradation were identified in these uncultured genomes, many of which were novel species with lignocellulolytic capability. CONCLUSIONS Our findings shed light on a great diversity of carbohydrate-degrading enzymes in the yak gut microbial community and uncultured species, which provides a useful genetic resource for future studies on the discovery of novel enzymes for industrial applications.
Collapse
Affiliation(s)
- Ga Gong
- Department of Animal Science, Tibet Agricultural and Animal Husbandry College, Linzhi, Tibet, China
| | - Saisai Zhou
- Department of Animal Science, Tibet Agricultural and Animal Husbandry College, Linzhi, Tibet, China
| | - Runbo Luo
- Department of Animal Science, Tibet Agricultural and Animal Husbandry College, Linzhi, Tibet, China
| | - Zhuoma Gesang
- Animal Epidemic Prevention and Control Center of Tibet Autonomous Region, Lasa, Tibet, China
| | - Sizhu Suolang
- Department of Animal Science, Tibet Agricultural and Animal Husbandry College, Linzhi, Tibet, China.
| |
Collapse
|
13
|
Furey PC, Lee SS, Clemans DL. Substratum-associated microbiota. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1629-1648. [PMID: 33463854 DOI: 10.1002/wer.1410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 06/12/2023]
Abstract
Highlights of new, interesting, and emerging research findings on substratum-associated microbiota covered from a survey of 2019 literature from primarily freshwaters provide insight into research trends of interest to the Water Environment Federation and others interested in benthic, aquatic environments. Coverage of topics on bottom-associated or attached algae and cyanobacteria, though not comprehensive, includes new methods, taxa new-to-science, nutrient dynamics, auto- and heterotrophic interactions, grazers, bioassessment, herbicides and other pollutants, metal contaminants, and nuisance, and bloom-forming and harmful algae. Coverage of bacteria, also not comprehensive, focuses on the ecology of benthic biofilms and microbial communities, along with the ecology of microbes like Caulobacter crescentus, Rhodobacter, and other freshwater microbial species. Bacterial topics covered also include metagenomics and metatranscriptomics, toxins and pollutants, bacterial pathogens and bacteriophages, and bacterial physiology. Readers may use this literature review to learn about or renew their interest in the recent advances and discoveries regarding substratum-associated microbiota. PRACTITIONER POINTS: This review of literature from 2019 on substratum-associated microbiota presents highlights of findings on algae, cyanobacteria, and bacteria from primarily freshwaters. Coverage of algae and cyanobacteria includes findings on new methods, taxa new to science, nutrient dynamics, auto- and heterotrophic interactions, grazers, bioassessment, herbicides and other pollutants, metal contaminants, and nuisance, bloom-forming and harmful algae. Coverage of bacteria includes findings on ecology of benthic biofilms and microbial communities, the ecology of microbes, metagenomics and metatranscriptomics, toxins and pollutants, bacterial pathogens and bacteriophages, and bacterial physiology. Highlights of new, noteworthy and emerging topics build on those from 2018 and will be of relevance to the Water Environment Federation and others interested in benthic, aquatic environments.
Collapse
Affiliation(s)
- Paula C Furey
- Department Biology, St. Catherine University, St. Paul, Minnesota, USA
| | - Sylvia S Lee
- Office of Research and Development, U.S. Environmental Protection Agency, Washington, District of Columbia, USA
| | - Daniel L Clemans
- Department of Biology, Eastern Michigan University, Ypsilanti, Michigan, USA
| |
Collapse
|
14
|
Alcon-Giner C, Dalby MJ, Caim S, Ketskemety J, Shaw A, Sim K, Lawson MA, Kiu R, Leclaire C, Chalklen L, Kujawska M, Mitra S, Fardus-Reid F, Belteki G, McColl K, Swann JR, Kroll JS, Clarke P, Hall LJ. Microbiota Supplementation with Bifidobacterium and Lactobacillus Modifies the Preterm Infant Gut Microbiota and Metabolome: An Observational Study. CELL REPORTS MEDICINE 2020; 1:100077. [PMID: 32904427 PMCID: PMC7453906 DOI: 10.1016/j.xcrm.2020.100077] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/28/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022]
Abstract
Supplementation with members of the early-life microbiota as “probiotics” is increasingly used in attempts to beneficially manipulate the preterm infant gut microbiota. We performed a large observational longitudinal study comprising two preterm groups: 101 infants orally supplemented with Bifidobacterium and Lactobacillus (Bif/Lacto) and 133 infants non-supplemented (control) matched by age, sex, and delivery method. 16S rRNA gene profiling on fecal samples (n = 592) showed a predominance of Bifidobacterium and a lower abundance of pathobionts in the Bif/Lacto group. Metabolomic analysis showed higher fecal acetate and lactate and a lower fecal pH in the Bif/Lacto group compared to the control group. Fecal acetate positively correlated with relative abundance of Bifidobacterium, consistent with the ability of the supplemented Bifidobacterium strain to metabolize human milk oligosaccharides into acetate. This study demonstrates that microbiota supplementation is associated with a Bifidobacterium-dominated preterm microbiota and gastrointestinal environment more closely resembling that of full-term infants. Bifidobacterium dominates the gut microbiota in supplemented preterm infants Supplemented preterm infants have lower abundance of potential pathobionts Metabolomic analysis show higher fecal acetate and lower pH in supplemented infants In vitro and genomic analysis confirm HMO metabolism in Bifidobacterium supplement
Collapse
Affiliation(s)
- Cristina Alcon-Giner
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Matthew J. Dalby
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Shabhonam Caim
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Jennifer Ketskemety
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Alex Shaw
- Department of Medicine, Section of Pediatrics, Imperial College London, London, UK
| | - Kathleen Sim
- Department of Medicine, Section of Pediatrics, Imperial College London, London, UK
| | - Melissa A.E. Lawson
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Raymond Kiu
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Charlotte Leclaire
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Lisa Chalklen
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Magdalena Kujawska
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Suparna Mitra
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Fahmina Fardus-Reid
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Gustav Belteki
- Neonatal Intensive Care Unit, The Rosie Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Katherine McColl
- Neonatal Intensive Care Unit, Norfolk and Norwich University Hospital, Norwich, UK
| | - Jonathan R. Swann
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - J. Simon Kroll
- Department of Medicine, Section of Pediatrics, Imperial College London, London, UK
| | - Paul Clarke
- Neonatal Intensive Care Unit, Norfolk and Norwich University Hospital, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Lindsay J. Hall
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
- Chair of Intestinal Microbiome, School of Life Sciences, Technical University of Munich, Freising, Germany
- ZIEL – Institute for Food & Health, Technical University of Munich, Freising, Germany
- Corresponding author
| |
Collapse
|
15
|
Wu S, Zhou L, Zhou Y, Wang H, Xiao J, Yan S, Wang Y. Diverse and unique viruses discovered in the surface water of the East China Sea. BMC Genomics 2020; 21:441. [PMID: 32590932 PMCID: PMC7318539 DOI: 10.1186/s12864-020-06861-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 06/22/2020] [Indexed: 11/23/2022] Open
Abstract
Background Viruses are the most abundant biological entities on earth and play import roles in marine biogeochemical cycles. Here, viral communities in the surface water of the East China Sea (ECS) were collected from three representative regions of Yangshan Harbor (YSH), Gouqi Island (GQI), and the Yangtze River Estuary (YRE) and explored primarily through epifluorescence microscopy (EM), transmission electron microscopy (TEM), and metagenomics analysis. Results The virus-like particles (VLPs) in the surface water of the ECS were measured to be 106 to 107 VLPs/ml. Most of the isolated viral particles possessed a head-and-tail structure, but VLPs with unique morphotypes that had never before been observed in the realm of viruses were also found. The sequences related to known viruses in GenBank accounted for 21.1–22.8% of the viromic datasets from YSH, GQI, and YRE. In total, 1029 viral species were identified in the surface waters of the ECS. Among them, tailed phages turn out to make up the majority of viral communities, however a small number of Phycodnaviridae or Mimiviridae related sequences were also detected. The diversity of viruses did not appear to be a big difference among these three aquatic environments but their relative abundance was geographically variable. For example, the Pelagibacter phage HTVC010P accounted for 50.4% of the identified viral species in GQI, but only 9.1% in YSH and 11.7% in YRE. Sequences, almost identical to those of uncultured marine thaumarchaeal dsDNA viruses and magroviruses that infect Marine Group II Euryarchaeota, were confidently detected in the ECS viromes. The predominant classes of virome ORFs with functional annotations that were found were those involved in viral biogenesis. Virus-host connections, inferred from CRISPR spacer-protospacer mapping, implied newly discovered infection relationships in response to arms race between them. Conclusions Together, both identified viruses and unknown viral assemblages observed in this study were indicative of the complex viral community composition found in the ECS. This finding fills a major gap in the dark world of oceanic viruses of China and additionally contributes to the better understanding of global marine viral diversity, composition, and distribution.
Collapse
Affiliation(s)
- Shuang Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Liang Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yifan Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Hongming Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jinzhou Xiao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Shuling Yan
- Institute of Biochemistry and Molecular Cell Biology, University of Göttingen, Göttingen, Germany
| | - Yongjie Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China. .,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China.
| |
Collapse
|
16
|
Chan AWY, Naphtali J, Schellhorn HE. High-throughput DNA sequencing technologies for water and wastewater analysis. Sci Prog 2019; 102:351-376. [PMID: 31818206 PMCID: PMC10424514 DOI: 10.1177/0036850419881855] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Conventional microbiological water monitoring uses culture-dependent techniques to screen indicator microbial species such as Escherichia coli and fecal coliforms. With high-throughput, second-generation sequencing technologies becoming less expensive, water quality monitoring programs can now leverage the massively parallel nature of second-generation sequencing technologies for batch sample processing to simultaneously obtain compositional and functional information of culturable and as yet uncultured microbial organisms. This review provides an introduction to the technical capabilities and considerations necessary for the use of second-generation sequencing technologies, specifically 16S rDNA amplicon and whole-metagenome sequencing, to investigate the composition and functional potential of microbiomes found in water and wastewater systems.
Collapse
Affiliation(s)
| | - James Naphtali
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|