1
|
Paudyal N, Das A, Carrillo E, Berka V, Jayaraman V. Partial agonism in heteromeric GLUK2/GLUK5 kainate receptor. Proteins 2025; 93:134-144. [PMID: 37526035 PMCID: PMC10830895 DOI: 10.1002/prot.26565] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 08/02/2023]
Abstract
Kainate receptors are a subtype of ionotropic glutamate receptors that form transmembrane channels upon binding glutamate. Here, we have investigated the mechanism of partial agonism in heteromeric GluK2/K5 receptors, where the GluK2 and GluK5 subunits have distinct agonist binding profiles. Using single-molecule Förster resonance energy transfer, we found that at the bi-lobed agonist-binding domain, the partial agonist AMPA-bound receptor occupied intermediate cleft closure conformational states at the GluK2 cleft, compared to the more open cleft conformations in apo form and more closed cleft conformations in the full agonist glutamate-bound form. In contrast, there is no significant difference in cleft closure states at the GluK5 agonist-binding domain between the partial agonist AMPA- and full agonist glutamate-bound states. Additionally, unlike the glutamate-bound state, the dimer interface at the agonist-binding domain is not decoupled in the AMPA-bound state. Our findings suggest that partial agonism observed with AMPA binding is mediated primarily due to differences in the GluK2 subunit, highlighting the distinct contributions of the subunits towards activation.
Collapse
Affiliation(s)
- Nabina Paudyal
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Anindita Das
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Elisa Carrillo
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Vladimir Berka
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Vasanthi Jayaraman
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030
| |
Collapse
|
2
|
Hale WD, Montaño Romero A, Gonzalez CU, Jayaraman V, Lau AY, Huganir RL, Twomey EC. Allosteric competition and inhibition in AMPA receptors. Nat Struct Mol Biol 2024; 31:1669-1679. [PMID: 38834914 PMCID: PMC11563869 DOI: 10.1038/s41594-024-01328-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024]
Abstract
Excitatory neurotransmission is principally mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-subtype ionotropic glutamate receptors (AMPARs). Negative allosteric modulators are therapeutic candidates that inhibit AMPAR activation and can compete with positive modulators to control AMPAR function through unresolved mechanisms. Here we show that allosteric inhibition pushes AMPARs into a distinct state that prevents both activation and positive allosteric modulation. We used cryo-electron microscopy to capture AMPARs bound to glutamate, while a negative allosteric modulator, GYKI-52466, and positive allosteric modulator, cyclothiazide, compete for control of the AMPARs. GYKI-52466 binds in the ion channel collar and inhibits AMPARs by decoupling the ligand-binding domains from the ion channel. The rearrangement of the ligand-binding domains ruptures the cyclothiazide site, preventing positive modulation. Our data provide a framework for understanding allostery of AMPARs and for rational design of therapeutics targeting AMPARs in neurological diseases.
Collapse
Affiliation(s)
- W Dylan Hale
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alejandra Montaño Romero
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cuauhtemoc U Gonzalez
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Vasanthi Jayaraman
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Albert Y Lau
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Richard L Huganir
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Edward C Twomey
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- The Beckman Center for Cryo-EM at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA.
| |
Collapse
|
3
|
Bender PA, Chakraborty S, Durham RJ, Berka V, Carrillo E, Jayaraman V. Bi-directional allosteric pathway in NMDA receptor activation and modulation. Nat Commun 2024; 15:8841. [PMID: 39396999 PMCID: PMC11471786 DOI: 10.1038/s41467-024-53181-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024] Open
Abstract
N-methyl-D-aspartate (NMDA) receptors are ionotropic glutamate receptors involved in learning and memory. NMDA receptors primarily comprise two GluN1 and two GluN2 subunits. The GluN2 subunit dictates biophysical receptor properties, including the extent of receptor activation and desensitization. GluN2A- and GluN2D-containing receptors represent two functional extremes. To uncover the conformational basis of their functional divergence, we utilize single-molecule fluorescence resonance energy transfer to probe the extracellular domains of these receptor subtypes under resting and ligand-bound conditions. We find that the conformational profile of the GluN2 amino-terminal domain correlates with the disparate functions of GluN2A- and GluN2D-containing receptors. Changes at the pre-transmembrane segments inversely correlate with those observed at the amino-terminal domain, confirming direct allosteric communication between these domains. Additionally, binding of a positive allosteric modulator at the transmembrane domain shifts the conformational profile of the amino-terminal domain towards the active state, revealing a bidirectional allosteric pathway between extracellular and transmembrane domains.
Collapse
Affiliation(s)
- Paula A Bender
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Subhajit Chakraborty
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ryan J Durham
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Vladimir Berka
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Elisa Carrillo
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Vasanthi Jayaraman
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA.
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
4
|
Bender PA, Chakraborty S, Durham RJ, Berka V, Carrillo E, Jayaraman V. Bi-directional allosteric pathway in NMDA receptor activation and modulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.589813. [PMID: 38659769 PMCID: PMC11042370 DOI: 10.1101/2024.04.16.589813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
N-methyl-D-aspartate (NMDA) receptors are ionotropic glutamate receptors involved in learning and memory. NMDA receptors primarily comprise two GluN1 and two GluN2 subunits. The GluN2 subunit dictates biophysical receptor properties, including the extent of receptor activation and desensitization. GluN2A- and GluN2D-containing receptors represent two functional extremes. To uncover the conformational basis of their functional divergence, we utilized single-molecule fluorescence resonance energy transfer to probe the extracellular domains of these receptor subtypes under resting and ligand-bound conditions. We find that the conformational profile of the GluN2 amino-terminal domain correlates with the disparate functions of GluN2A- and GluN2D-containing receptors. Changes at the pre-transmembrane segments inversely correlate with those observed at the amino-terminal domain, confirming direct allosteric communication between these domains. Additionally, binding of a positive allosteric modulator at the transmembrane domain shifts the conformational profile of the amino-terminal domain towards the active state, revealing a bidirectional allosteric pathway between extracellular and transmembrane domains.
Collapse
|
5
|
Durham RJ, Jayaraman V. Single-Molecule FRET Analyses of NMDA Receptors. Methods Mol Biol 2024; 2799:225-242. [PMID: 38727910 PMCID: PMC11164542 DOI: 10.1007/978-1-0716-3830-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Single-molecule fluorescence resonance energy transfer (smFRET) enables the real-time observation of conformational changes in a single protein molecule of interest. These observations are achieved by attaching fluorophores to proteins of interest in a site-specific manner and investigating the FRET between the fluorophores. Here we describe the method wherein the FRET is studied by adhering the protein molecules to a slide using affinity-based interactions and measuring the fluorophores' fluorescence intensity from a single molecule over time. The resulting information can be used to derive distance values for a point-to-point measurement within a protein or to calculate kinetic transition rates between various conformational states of a protein. Comparing these parameters between different conditions such as the presence of protein binding partners, application of ligands, or changes in the primary sequence of the protein can provide insights into protein structural changes as well as kinetics of these changes (if in the millisecond to second timescale) that underlie functional effects. Here we describe the procedure for conducting analyses of NMDA receptor conformational changes using the above methodology and provide a discussion of various considerations that affect the design, execution, and interpretation of similar smFRET studies.
Collapse
Affiliation(s)
- Ryan J Durham
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Vasanthi Jayaraman
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
6
|
Hale WD, Romero AM, Gonzalez CU, Jayaraman V, Lau AY, Huganir RL, Twomey EC. Allosteric Competition and Inhibition in AMPA Receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.569057. [PMID: 38076818 PMCID: PMC10705377 DOI: 10.1101/2023.11.28.569057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Excitatory neurotransmission is principally mediated by AMPA-subtype ionotropic glutamate receptors (AMPARs). Dysregulation of AMPARs is the cause of many neurological disorders and how therapeutic candidates such as negative allosteric modulators inhibit AMPARs is unclear. Here, we show that non-competitive inhibition desensitizes AMPARs to activation and prevents positive allosteric modulation. We dissected the noncompetitive inhibition mechanism of action by capturing AMPARs bound to glutamate and the prototypical negative allosteric modulator, GYKI-52466, with cryo-electron microscopy. Noncompetitive inhibition by GYKI-52466, which binds in the transmembrane collar region surrounding the ion channel, negatively modulates AMPARs by decoupling glutamate binding in the ligand binding domain from the ion channel. Furthermore, during allosteric competition between negative and positive modulators, negative allosteric modulation by GKYI-52466 outcompetes positive allosteric modulators to control AMPAR function. Our data provide a new framework for understanding allostery of AMPARs and foundations for rational design of therapeutics targeting AMPARs in neurological diseases.
Collapse
Affiliation(s)
- W. Dylan Hale
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Alejandra Montaño Romero
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Cuauhtemoc U. Gonzalez
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Vasanthi Jayaraman
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, TX, USA
| | - Albert Y. Lau
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Richard L. Huganir
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Edward C. Twomey
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD USA
- The Beckman Center for Cryo-EM at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Diana Helis Henry Medical Research Foundation, New Orleans, LA USA
| |
Collapse
|
7
|
Gating intermediates reveal inhibitory role of the voltage sensor in a cyclic nucleotide-modulated ion channel. Nat Commun 2022; 13:6919. [PMID: 36376326 PMCID: PMC9663499 DOI: 10.1038/s41467-022-34673-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
Understanding how ion channels gate is important for elucidating their physiological roles and targeting them in pathophysiological states. Here, we used SthK, a cyclic nucleotide-modulated channel from Spirochaeta thermophila, to define a ligand-gating trajectory that includes multiple on-pathway intermediates. cAMP is a poor partial agonist for SthK and depolarization increases SthK activity. Tuning the energy landscape by gain-of-function mutations in the voltage sensor domain (VSD) allowed us to capture multiple intermediates along the ligand-activation pathway, highlighting the allosteric linkage between VSD, cyclic nucleotide-binding (CNBD) and pore domains. Small, lateral displacements of the VSD S4 segment were necessary to open the intracellular gate, pointing to an inhibitory VSD at rest. We propose that in wild-type SthK, depolarization leads to such VSD displacements resulting in release of inhibition. In summary, we report conformational transitions along the activation pathway that reveal allosteric couplings between key sites integrating to open the intracellular gate.
Collapse
|
8
|
Structural Arrangement Produced by Concanavalin A Binding to Homomeric GluK2 Receptors. MEMBRANES 2021; 11:membranes11080613. [PMID: 34436376 PMCID: PMC8401665 DOI: 10.3390/membranes11080613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022]
Abstract
Kainate receptors are members of the ionotropic glutamate receptor family. They form cation-specific transmembrane channels upon binding glutamate that desensitize in the continued presence of agonists. Concanavalin A (Con-A), a lectin, stabilizes the active open-channel state of the kainate receptor and reduces the extent of desensitization. In this study, we used single-molecule fluorescence resonance energy transfer (smFRET) to investigate the conformational changes underlying kainate receptor modulation by Con-A. These studies showed that Con-A binding to GluK2 homomeric kainate receptors resulted in closer proximity of the subunits at the dimer–dimer interface at the amino-terminal domain as well as between the subunits at the dimer interface at the agonist-binding domain. Additionally, the modulation of receptor functions by monovalent ions, which bind to the dimer interface at the agonist-binding domain, was not observed in the presence of Con-A. Based on these results, we conclude that Con-A modulation of kainate receptor function is mediated by a shift in the conformation of the kainate receptor toward a tightly packed extracellular domain.
Collapse
|
9
|
Zhang J, Tang W, Bhatia NK, Xu Y, Paudyal N, Liu D, Kim S, Song R, XiangWei W, Shaulsky G, Myers SJ, Dobyns W, Jayaraman V, Traynelis SF, Yuan H, Bozarth X. A de novo GRIN1 Variant Associated With Myoclonus and Developmental Delay: From Molecular Mechanism to Rescue Pharmacology. Front Genet 2021; 12:694312. [PMID: 34413877 PMCID: PMC8369916 DOI: 10.3389/fgene.2021.694312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022] Open
Abstract
N-Methyl-D-aspartate receptors (NMDARs) are highly expressed in brain and play important roles in neurodevelopment and various neuropathologic conditions. Here, we describe a new phenotype in an individual associated with a novel de novo deleterious variant in GRIN1 (c.1595C>A, p.Pro532His). The clinical phenotype is characterized with developmental encephalopathy, striking stimulus-sensitive myoclonus, and frontal lobe and frontal white matter hypoplasia, with no apparent seizures detected. NMDARs that contained the P532H within the glycine-binding domain of GluN1 with either the GluN2A or GluN2B subunits were evaluated for changes in their pharmacological and biophysical properties, which surprisingly revealed only modest changes in glycine potency but a significant decrease in glutamate potency, an increase in sensitivity to endogenous zinc inhibition, a decrease in response to maximally effective concentrations of agonists, a shortened synaptic-like response time course, a decreased channel open probability, and a reduced receptor cell surface expression. Molecule dynamics simulations suggested that the variant can lead to additional interactions across the dimer interface in the agonist-binding domains, resulting in a more open GluN2 agonist-binding domain cleft, which was also confirmed by single-molecule fluorescence resonance energy transfer measurements. Based on the functional deficits identified, several positive modulators were evaluated to explore potential rescue pharmacology.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Weiting Tang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Nidhi K. Bhatia
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center, Houston, TX, United States
| | - Yuchen Xu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Nabina Paudyal
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center, Houston, TX, United States
| | - Ding Liu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Sukhan Kim
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, United States
| | - Rui Song
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Wenshu XiangWei
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Gil Shaulsky
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Scott J. Myers
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, United States
| | - William Dobyns
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Vasanthi Jayaraman
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center, Houston, TX, United States
| | - Stephen F. Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, United States
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, United States
| | - Xiuhua Bozarth
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Division of Pediatric Neurology, Department of Neurology, Seattle Children’s Hospital, University of Washington, Seattle, WA, United States
| |
Collapse
|
10
|
Paudyal N, Bhatia NK, Jayaraman V. Single molecule FRET methodology for investigating glutamate receptors. Methods Enzymol 2021; 652:193-212. [PMID: 34059282 DOI: 10.1016/bs.mie.2021.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Single molecule Förster Resonance Energy Transfer (smFRET) allows us to measure variation in distances between donor and acceptor fluorophores attached to a protein, providing the conformational landscape of the protein with respect to this specific distance. smFRET can be performed on freely diffusing molecules or on tethered molecules. Here, we describe the tethered method used to study ionotropic glutamate receptors, which allows us to track the changes in FRET as a function of time, thus providing information on the conformations sampled and kinetics of conformational changes in the millisecond to second time scale. Strategies for attaching fluorophores to the proteins, methods for acquiring and analyzing the smFRET trajectories, and limitations are discussed.
Collapse
Affiliation(s)
- Nabina Paudyal
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center at Houston, Houston, TX, United States; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Nidhi Kaur Bhatia
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Vasanthi Jayaraman
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center at Houston, Houston, TX, United States; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, United States.
| |
Collapse
|
11
|
Bhatia NK, Carrillo E, Durham RJ, Berka V, Jayaraman V. Allosteric Changes in the NMDA Receptor Associated with Calcium-Dependent Inactivation. Biophys J 2020; 119:2349-2359. [PMID: 33098865 DOI: 10.1016/j.bpj.2020.08.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/14/2020] [Accepted: 08/20/2020] [Indexed: 01/07/2023] Open
Abstract
N-methyl-D-aspartate (NMDA) receptors mediate synaptic excitatory signaling in the mammalian central nervous system by forming calcium-permeable transmembrane channels upon binding glutamate and coagonist glycine. Ca2+ influx through NMDA receptors leads to channel inactivation through a process mediated by resident calmodulin bound to the intracellular C-terminal segment of the GluN1 subunit of the receptor. Using single-molecule FRET investigations, we show that in the presence of calcium-calmodulin, the distance across the two GluN1 subunits at the entrance of the first transmembrane segment is shorter and the bilobed cleft of the glycine-binding domain in GluN1 is more closed when bound to glycine and glutamate relative to what is observed in the presence of barium-calmodulin. Consistent with these observations, the glycine deactivation rate is slower in the presence of calcium-calmodulin. Taken together, these results show that the binding of calcium-calmodulin to the C-terminus has long-range allosteric effects on the extracellular segments of the receptor that may contribute to the calcium-dependent inactivation.
Collapse
Affiliation(s)
- Nidhi Kaur Bhatia
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Elisa Carrillo
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Ryan J Durham
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, Texas; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, Texas
| | - Vladimir Berka
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Vasanthi Jayaraman
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, Texas; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, Texas.
| |
Collapse
|
12
|
Durham RJ, Paudyal N, Carrillo E, Bhatia NK, Maclean DM, Berka V, Dolino DM, Gorfe AA, Jayaraman V. Conformational spread and dynamics in allostery of NMDA receptors. Proc Natl Acad Sci U S A 2020; 117:3839-3847. [PMID: 32015122 PMCID: PMC7035515 DOI: 10.1073/pnas.1910950117] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Allostery can be manifested as a combination of repression and activation in multidomain proteins allowing for fine tuning of regulatory mechanisms. Here we have used single molecule fluorescence resonance energy transfer (smFRET) and molecular dynamics simulations to study the mechanism of allostery underlying negative cooperativity between the two agonists glutamate and glycine in the NMDA receptor. These data show that binding of one agonist leads to conformational flexibility and an increase in conformational spread at the second agonist site. Mutational and cross-linking studies show that the dimer-dimer interface at the agonist-binding domain mediates the allostery underlying the negative cooperativity. smFRET on the transmembrane segments shows that they are tightly coupled in the unliganded and single agonist-bound form and only upon binding both agonists the transmembrane domain explores looser packing which would facilitate activation.
Collapse
Affiliation(s)
- Ryan J Durham
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Nabina Paudyal
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Elisa Carrillo
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Nidhi Kaur Bhatia
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - David M Maclean
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642
| | - Vladimir Berka
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Drew M Dolino
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Alemayehu A Gorfe
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Vasanthi Jayaraman
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030;
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030
| |
Collapse
|
13
|
Litwin DB, Carrillo E, Shaikh SA, Berka V, Jayaraman V. The structural arrangement at intersubunit interfaces in homomeric kainate receptors. Sci Rep 2019; 9:6969. [PMID: 31061516 PMCID: PMC6502836 DOI: 10.1038/s41598-019-43360-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/23/2019] [Indexed: 02/02/2023] Open
Abstract
Kainate receptors are glutamate-gated cation-selective channels involved in excitatory synaptic signaling and are known to be modulated by ions. Prior functional and structural studies suggest that the dimer interface at the agonist-binding domain plays a key role in activation, desensitization, and ion modulation in kainate receptors. Here we have used fluorescence-based methods to investigate the changes and conformational heterogeneity at these interfaces associated with the resting, antagonist-bound, active, desensitized, and ion-modulated states of the receptor. These studies show that in the presence of Na+ ions the interfaces exist primarily in the coupled state in the apo, antagonist-bound and activated (open channel) states. Under desensitizing conditions, the largely decoupled dimer interface at the agonist-binding domain as seen in the cryo-EM structure is one of the states observed. However, in addition to this state there are several additional states with lower levels of decoupling. Replacing Na+ with Cs+ does not alter the FRET efficiencies of the states significantly, but shifts the population to the more decoupled states in both resting and desensitized states, which can be correlated with the lower activation seen in the presence of Cs+.
Collapse
Affiliation(s)
- Douglas B Litwin
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, Texas, 77030, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, Texas, 77030, USA
| | - Elisa Carrillo
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, Texas, 77030, USA
| | - Sana A Shaikh
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, Texas, 77030, USA
| | - Vladimir Berka
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, Texas, 77030, USA
| | - Vasanthi Jayaraman
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, Texas, 77030, USA.
| |
Collapse
|