1
|
Christi K, Hudson J, Egan S. Current approaches to genetic modification of marine bacteria and considerations for improved transformation efficiency. Microbiol Res 2024; 284:127729. [PMID: 38663232 DOI: 10.1016/j.micres.2024.127729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/25/2024] [Accepted: 04/15/2024] [Indexed: 05/26/2024]
Abstract
Marine bacteria play vital roles in symbiosis, biogeochemical cycles and produce novel bioactive compounds and enzymes of interest for the pharmaceutical, biofuel and biotechnology industries. At present, investigations into marine bacterial functions and their products are primarily based on phenotypic observations, -omic type approaches and heterologous gene expression. To advance our understanding of marine bacteria and harness their full potential for industry application, it is critical that we have the appropriate tools and resources to genetically manipulate them in situ. However, current genetic tools that are largely designed for model organisms such as E. coli, produce low transformation efficiencies or have no transfer ability in marine bacteria. To improve genetic manipulation applications for marine bacteria, we need to improve transformation methods such as conjugation and electroporation in addition to identifying more marine broad host range plasmids. In this review, we aim to outline the reported methods of transformation for marine bacteria and discuss the considerations for each approach in the context of improving efficiency. In addition, we further discuss marine plasmids and future research areas including CRISPR tools and their potential applications for marine bacteria.
Collapse
Affiliation(s)
- Katrina Christi
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, Australia
| | - Jennifer Hudson
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, Australia
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, Australia.
| |
Collapse
|
2
|
Fidopiastis PM, Childs C, Esin JJ, Stellern J, Darin A, Lorenzo A, Mariscal VT, Lorenz J, Gopan V, McAnulty S, Visick KL. Corrected and republished from: " Vibrio fischeri Possesses Xds and Dns Nucleases That Differentially Influence Phosphate Scavenging, Aggregation, Competence, and Symbiotic Colonization of Squid". Appl Environ Microbiol 2024; 90:e0032824. [PMID: 38712952 PMCID: PMC11218612 DOI: 10.1128/aem.00328-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/26/2024] [Indexed: 05/08/2024] Open
Abstract
Cells of Vibrio fischeri colonize the light organ of Euprymna scolopes, providing the squid bioluminescence in exchange for nutrients and protection. The bacteria encounter DNA-rich mucus throughout their transition to a symbiotic lifestyle, leading us to hypothesize a role for nuclease activity in the colonization process. In support of this, we detected abundant extracellular nuclease activity in growing cells of V. fischeri. To discover the gene(s) responsible for this activity, we screened a V. fischeri transposon mutant library for nuclease-deficient strains. Interestingly, only one strain, whose transposon insertion mapped to nuclease gene VF_1451, showed a complete loss of nuclease activity in our screens. A database search revealed that VF_1451 is homologous to the nuclease-encoding gene xds in Vibrio cholerae. However, V. fischeri strains lacking xds eventually revealed slight nuclease activity on plates upon prolonged incubation. This led us to hypothesize that a second secreted nuclease, identified through a database search as VF_0437, a homolog of V. cholerae dns, might be responsible for the residual nuclease activity. Here, we show that Xds and/or Dns are involved in essential aspects of V. fischeri biology, including natural transformation, aggregation, and phosphate scavenging. Furthermore, strains lacking either nuclease were outcompeted by the wild type for squid colonization. Understanding the specific role of nuclease activity in the squid colonization process represents an intriguing area of future research.IMPORTANCEFrom soil and water to host-associated secretions such as mucus, environments that bacteria inhabit are awash in DNA. Extracellular DNA (eDNA) is a nutritious resource that microbes dedicate significant energy to exploit. Calcium binds eDNA to promote cell-cell aggregation and horizontal gene transfer. eDNA hydrolysis impacts the construction of and dispersal from biofilms. Strategies in which pathogens use nucleases to avoid phagocytosis or disseminate by degrading host secretions are well-documented; significantly less is known about nucleases in mutualistic associations. This study describes the role of nucleases in the mutualism between Vibrio fischeri and its squid host Euprymna scolopes. We find that nuclease activity is an important determinant of colonization in V. fischeri, broadening our understanding of how microbes establish and maintain beneficial associations.
Collapse
Affiliation(s)
- Pat M. Fidopiastis
- Department of Biological Sciences, California State University, San Luis Obispo, California, USA
| | - Chaz Childs
- Department of Biological Sciences, California State University, San Luis Obispo, California, USA
| | - Jeremy J. Esin
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Jordan Stellern
- Department of Biological Sciences, California State University, San Luis Obispo, California, USA
| | - Anna Darin
- Department of Biological Sciences, California State University, San Luis Obispo, California, USA
| | - Andrea Lorenzo
- Department of Biological Sciences, California State University, San Luis Obispo, California, USA
| | - Vanessa T. Mariscal
- Department of Biological Sciences, California State University, San Luis Obispo, California, USA
| | - Jason Lorenz
- Department of Biological Sciences, California State University, San Luis Obispo, California, USA
| | - Vinay Gopan
- Department of Biological Sciences, California State University, San Luis Obispo, California, USA
| | - Sarah McAnulty
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Karen L. Visick
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
3
|
Fidopiastis PM, Childs C, Esin JJ, Stellern J, Darin A, Lorenzo A, Mariscal VT, Lorenz J, Gopan V, McAnulty S, Visick KL. Vibrio fischeri Possesses Xds and Dns Nucleases That Differentially Influence Phosphate Scavenging, Aggregation, Competence, and Symbiotic Colonization of Squid. Appl Environ Microbiol 2022; 88:e0163522. [PMID: 36342139 PMCID: PMC9680621 DOI: 10.1128/aem.01635-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
Cells of Vibrio fischeri colonize the light organ of Euprymna scolopes, providing the squid bioluminescence in exchange for nutrients and protection. The bacteria encounter DNA-rich mucus throughout their transition to a symbiotic lifestyle, leading us to hypothesize a role for nuclease activity in the colonization process. In support of this, we detected abundant extracellular nuclease activity in growing cells of V. fischeri. To discover the gene(s) responsible for this activity, we screened a V. fischeri transposon mutant library for nuclease-deficient strains. Interestingly, only one strain, whose transposon insertion mapped to nuclease gene VF_1451, showed complete loss of nuclease activity in our screens. A database search revealed that VF_1451 is homologous to the nuclease-encoding gene xds in Vibrio cholerae. However, V. fischeri strains lacking xds eventually revealed slight nuclease activity on plates after 72 h. This led us to hypothesize that a second secreted nuclease, identified through a database search as VF_0437, a homolog of V. cholerae dns, might be responsible for the residual nuclease activity. Here, we show that Xds and/or Dns are involved in essential aspects of V. fischeri biology, including natural transformation, aggregation, and phosphate scavenging. Furthermore, strains lacking either nuclease were outcompeted by the wild type for squid colonization. Understanding the specific role of nuclease activity in the squid colonization process represents an intriguing area of future research. IMPORTANCE From soil and water to host-associated secretions such as mucus, environments that bacteria inhabit are awash in DNA. Extracellular DNA (eDNA) is a nutritious resource that microbes dedicate significant energy to exploit. Calcium binds eDNA to promote cell-cell aggregation and horizontal gene transfer. eDNA hydrolysis impacts construction of and dispersal from biofilms. Strategies in which pathogens use nucleases to avoid phagocytosis or disseminate by degrading host secretions are well documented; significantly less is known about nucleases in mutualistic associations. This study describes the role of nucleases in the mutualism between V. fischeri and its squid host, Euprymna scolopes. We find that nuclease activity is an important determinant of colonization in V. fischeri, broadening our understanding of how microbes establish and maintain beneficial associations.
Collapse
Affiliation(s)
| | - Chaz Childs
- California State University, San Luis Obispo, California, USA
| | | | - Jordan Stellern
- California State University, San Luis Obispo, California, USA
| | - Anna Darin
- California State University, San Luis Obispo, California, USA
| | - Andrea Lorenzo
- California State University, San Luis Obispo, California, USA
| | | | - Jason Lorenz
- California State University, San Luis Obispo, California, USA
| | - Vinay Gopan
- California State University, San Luis Obispo, California, USA
| | | | | |
Collapse
|
4
|
Christensen DG, Tepavčević J, Visick KL. Genetic Manipulation of Vibrio fischeri. ACTA ACUST UNITED AC 2021; 59:e115. [PMID: 32975913 DOI: 10.1002/cpmc.115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vibrio fischeri is a nonpathogenic organism related to pathogenic Vibrio species. The bacterium has been used as a model organism to study symbiosis in the context of its association with its host, the Hawaiian bobtail squid Euprymna scolopes. The genetic tractability of this bacterium has facilitated the mapping of pathways that mediate interactions between these organisms. The protocols included here describe methods for genetic manipulation of V. fischeri. Following these protocols, the researcher will be able to introduce linear DNA via transformation to make chromosomal mutations, to introduce plasmid DNA via conjugation and subsequently eliminate unstable plasmids, to eliminate antibiotic resistance cassettes from the chromosome, and to randomly or specifically mutagenize V. fischeri with transposons. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Transformation of V. fischeri with linear DNA Basic Protocol 2: Plasmid transfer into V. fischeri via conjugation Support Protocol 1: Removing FRT-flanked antibiotic resistance cassettes from the V. fischeri genome Support Protocol 2: Eliminating unstable plasmids from V. fischeri Alternate Protocol 1: Introduction of exogenous DNA using a suicide plasmid Alternate Protocol 2: Site-specific transposon insertion using a suicide plasmid Alternate Protocol 3: Random transposon mutagenesis using a suicide plasmid.
Collapse
Affiliation(s)
- David G Christensen
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois
| | | | - Karen L Visick
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois
| |
Collapse
|
5
|
A lasting symbiosis: how Vibrio fischeri finds a squid partner and persists within its natural host. Nat Rev Microbiol 2021; 19:654-665. [PMID: 34089008 DOI: 10.1038/s41579-021-00557-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 01/10/2023]
Abstract
As our understanding of the human microbiome progresses, so does the need for natural experimental animal models that promote a mechanistic understanding of beneficial microorganism-host interactions. Years of research into the exclusive symbiosis between the Hawaiian bobtail squid, Euprymna scolopes, and the bioluminescent bacterium Vibrio fischeri have permitted a detailed understanding of those bacterial genes underlying signal exchange and rhythmic activities that result in a persistent, beneficial association, as well as glimpses into the evolution of symbiotic competence. Migrating from the ambient seawater to regions deep inside the light-emitting organ of the squid, V. fischeri experiences, recognizes and adjusts to the changing environmental conditions. Here, we review key advances over the past 15 years that are deepening our understanding of these events.
Collapse
|
6
|
Control of Competence in Vibrio fischeri. Appl Environ Microbiol 2021; 87:AEM.01962-20. [PMID: 33397700 DOI: 10.1128/aem.01962-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/22/2020] [Indexed: 01/18/2023] Open
Abstract
Vibrio species, including the squid symbiont Vibrio fischeri, become competent to take up DNA under specific conditions. For example, V. fischeri becomes competent when grown in the presence of chitin oligosaccharides or upon overproduction of the competence regulatory factor TfoX. While little is known about the regulatory pathway(s) that controls V. fischeri competence, this microbe encodes homologs of factors that control competence in the well-studied V. cholerae To further develop V. fischeri as a genetically tractable organism, we evaluated the roles of some of these competence homologs. Using TfoX-overproducing cells, we found that competence depends upon LitR, the homolog of V. cholerae master quorum-sensing and competence regulator HapR, and upon homologs of putative pilus genes that in V. cholerae facilitate DNA uptake. Disruption of genes for negative regulators upstream of LitR, namely, the LuxO protein and the small RNA (sRNA) Qrr1, resulted in increased transformation frequencies. Unlike LitR-controlled light production, however, competence did not vary with cell density under tfoX overexpression conditions. Analogous to the case with V. cholerae, the requirement for LitR could be suppressed by loss of the Dns nuclease. We also found a role for the putative competence regulator CytR. Finally, we determined that transformation frequencies varied depending on the TfoX-encoding plasmid, and we developed a new dual tfoX and litR overexpression construct that substantially increased the transformation frequency of a less genetically tractable strain. By advancing the ease of genetic manipulation of V. fischeri, these findings will facilitate the rapid discovery of genes involved in physiologically relevant processes, such as biofilm formation and host colonization.IMPORTANCE The ability of bacteria to take up DNA (competence) and incorporate foreign DNA into their genomes (transformation) permits them to rapidly evolve and gain new traits and/or acquire antibiotic resistances. It also facilitates laboratory-based investigations into mechanisms of specific phenotypes, such as those involved in host colonization. Vibrio fischeri has long been a model for symbiotic bacterium-host interactions as well as for other aspects of its physiology, such as bioluminescence and biofilm formation. Competence of V. fischeri can be readily induced upon overexpression of the competence factor TfoX. Relatively little is known about the V. fischeri competence pathway, although homologs of factors known to be important in V. cholerae competence exist. By probing the importance of putative competence factors that control transformation of V. fischeri, this work deepens our understanding of the competence process and advances our ability to genetically manipulate this important model organism.
Collapse
|
7
|
Fidopiastis PM, Mariscal V, McPherson JM, McAnulty S, Dunn A, Stabb EV, Visick KL. Vibrio fischeri Amidase Activity Is Required for Normal Cell Division, Motility, and Symbiotic Competence. Appl Environ Microbiol 2021; 87:e02109-20. [PMID: 33187995 PMCID: PMC7848909 DOI: 10.1128/aem.02109-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/12/2020] [Indexed: 11/20/2022] Open
Abstract
N-Acetylmuramoyl-l-alanine amidases are periplasmic hydrolases that cleave the amide bond between N-acetylmuramic acid and alanine in peptidoglycan (PG). Unlike many Gram-negative bacteria that encode redundant periplasmic amidases, Vibrio fischeri appears to encode a single protein that is homologous to AmiB of Vibrio cholerae We screened a V. fischeri transposon mutant library for strains altered in biofilm production and discovered a biofilm-overproducing strain with an insertion in amiB (VF_2326). Further characterization of biofilm enhancement suggested that this phenotype was due to the overproduction of cellulose, and it was dependent on the bcsA cellulose synthase. Additionally, the amiB mutant was nonmotile, perhaps due to defects in its ability to septate during division. The amidase mutant was unable to compete with the wild type for the colonization of V. fischeri's symbiotic host, the squid Euprymna scolopes In single-strain inoculations, host squid inoculated with the mutant eventually became colonized but with a much lower efficiency than in squid inoculated with the wild type. This observation was consistent with the pleiotropic effects of the amiB mutation and led us to speculate that motile suppressors of the amiB mutant were responsible for the partially restored colonization. In culture, motile suppressor mutants carried point mutations in a single gene (VF_1477), resulting in a partial restoration of wild-type motility. In addition, these point mutations reversed the effect of the amiB mutation on cellulosic biofilm production. These data are consistent with V. fischeri AmiB possessing amidase activity; they also suggest that AmiB suppresses cellulosic biofilm formation but promotes successful host colonization.IMPORTANCE Peptidoglycan (PG) is a critical microbe-associated molecular pattern (MAMP) that is sloughed by cells of V. fischeri during symbiotic colonization of squid. Specifically, this process induces significant remodeling of a specialized symbiotic light organ within the squid mantle cavity. This phenomenon is reminiscent of the loss of ciliated epithelium in patients with whooping cough due to the production of PG monomers by Bordetella pertussis Furthermore, PG processing machinery can influence susceptibility to antimicrobials. In this study, we report roles for the V. fischeri PG amidase AmiB, including the beneficial colonization of squid, underscoring the urgency to more deeply understand PG processing machinery and the downstream consequences of their activities.
Collapse
Affiliation(s)
| | | | | | | | - Anne Dunn
- University of Oklahoma, Norman, Oklahoma, USA
| | | | | |
Collapse
|