1
|
Duarte-Sanmiguel S, Salazar-Puerta AI, Panic A, Dodd D, Francis C, Alzate-Correa D, Ortega-Pineda L, Lemmerman L, Rincon-Benavides MA, Dathathreya K, Lawrence W, Ott N, Zhang J, Deng B, Wang S, Santander SP, McComb DW, Reategui E, Palmer AF, Carson WE, Higuita-Castro N, Gallego-Perez D. ICAM-1-decorated extracellular vesicles loaded with miR-146a and Glut1 drive immunomodulation and hinder tumor progression in a murine model of breast cancer. Biomater Sci 2023; 11:6834-6847. [PMID: 37646133 PMCID: PMC10591940 DOI: 10.1039/d3bm00573a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Tumor-associated immune cells play a crucial role in cancer progression. Myeloid-derived suppressor cells (MDSCs), for example, are immature innate immune cells that infiltrate the tumor to exert immunosuppressive activity and protect cancer cells from the host's immune system and/or cancer-specific immunotherapies. While tumor-associated immune cells have emerged as a promising therapeutic target, efforts to counter immunosuppression within the tumor niche have been hampered by the lack of approaches that selectively target the immune cell compartment of the tumor, to effectively eliminate "tumor-protecting" immune cells and/or drive an "anti-tumor" phenotype. Here we report on a novel nanotechnology-based approach to target tumor-associated immune cells and promote "anti-tumor" responses in a murine model of breast cancer. Engineered extracellular vesicles (EVs) decorated with ICAM-1 ligands and loaded with miR-146a and Glut1, were biosynthesized (in vitro or in vivo) and administered to tumor-bearing mice once a week for up to 5 weeks. The impact of this treatment modality on the immune cell compartment and tumor progression was evaluated via RT-qPCR, flow cytometry, and histology. Our results indicate that weekly administration of the engineered EVs (i.e., ICAM-1-decorated and loaded with miR-146a and Glut1) hampered tumor progression compared to ICAM-1-decorated EVs with no cargo. Flow cytometry analyses of the tumors indicated a shift in the phenotype of the immune cell population toward a more pro-inflammatory state, which appeared to have facilitated the infiltration of tumor-targeting T cells, and was associated with a reduction in tumor size and decreased metastatic burden. Altogether, our results indicate that ICAM-1-decorated EVs could be a powerful platform nanotechnology for the deployment of immune cell-targeting therapies to solid tumors.
Collapse
Affiliation(s)
| | - Ana I Salazar-Puerta
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
- The Ohio State University, Gene Therapy Institute, Columbus, OH 43210, USA
| | - Ana Panic
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
| | - Daniel Dodd
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
- The Ohio State University, Biomedical Sciences Graduate Program, Columbus, OH 43210, USA
| | - Carlie Francis
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
| | - Diego Alzate-Correa
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
- The Ohio State University, Gene Therapy Institute, Columbus, OH 43210, USA
| | - Lilibeth Ortega-Pineda
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
| | - Luke Lemmerman
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
| | - Maria A Rincon-Benavides
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
- The Ohio State University, Gene Therapy Institute, Columbus, OH 43210, USA
- The Ohio State University, Biophysics Program, Columbus, OH 43210, USA
| | - Kavya Dathathreya
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
| | - William Lawrence
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
- The Ohio State University, Biomedical Sciences Graduate Program, Columbus, OH 43210, USA
| | - Neil Ott
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
| | - Jingjing Zhang
- The Ohio State University, William G. Lowrie Department of Chemical and Biomolecular Engineering, Columbus, OH 43210, USA
| | - Binbin Deng
- The Ohio State University, Center for Electron Microscopy and Microanalysis (CEMAS), Columbus, OH 43210, USA
| | - Shipeng Wang
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
| | - Sandra P Santander
- Juan N. Corpas University Foundation, Center of Phytoimmunomodulation Department of Medicine, Bogota, Colombia
| | - David W McComb
- The Ohio State University, Center for Electron Microscopy and Microanalysis (CEMAS), Columbus, OH 43210, USA
- The Ohio State University, Department of Materials Science and Engineering, Columbus, OH 43210, USA
| | - Eduardo Reategui
- The Ohio State University, William G. Lowrie Department of Chemical and Biomolecular Engineering, Columbus, OH 43210, USA
| | - Andre F Palmer
- The Ohio State University, William G. Lowrie Department of Chemical and Biomolecular Engineering, Columbus, OH 43210, USA
| | - William E Carson
- The Ohio State University, Department of Surgery, Columbus, OH 43210, USA
| | - Natalia Higuita-Castro
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
- The Ohio State University, Gene Therapy Institute, Columbus, OH 43210, USA
- The Ohio State University, Biophysics Program, Columbus, OH 43210, USA
- The Ohio State University, Department of Surgery, Columbus, OH 43210, USA
- The Ohio State University, Dorothy M. Davis Heart and Lung Research Institute, Columbus, OH 43210, USA
- The Ohio State University, Department of Neurological Surgery, Columbus, OH, 43210, USA
| | - Daniel Gallego-Perez
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210, USA.
- The Ohio State University, Gene Therapy Institute, Columbus, OH 43210, USA
- The Ohio State University, Biophysics Program, Columbus, OH 43210, USA
- The Ohio State University, Department of Surgery, Columbus, OH 43210, USA
- The Ohio State University, Dorothy M. Davis Heart and Lung Research Institute, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Ortega-Pineda L, Guilfoyle E, Rincon-Benavides MA, Anaparthi AL, Lemmerman LR, Cuellar-Gaviria TZ, Lawrence W, Buss JL, Deng B, Blackstone BN, Salazar-Puerta A, McComb DW, Powell H, Gallego-Perez D, Higuita-Castro N. Engineered extracellular vesicles from human skin cells induce pro-β-cell conversions in pancreatic ductal cells. ADVANCED NANOBIOMED RESEARCH 2023; 3:2200173. [PMID: 38911285 PMCID: PMC11192446 DOI: 10.1002/anbr.202200173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024] Open
Abstract
Direct nuclear reprogramming has the potential to enable the development of β cell replacement therapies for diabetes that do not require the use of progenitor/stem cell populations. However, despite their promise, current approaches to β cell-directed reprogramming rely heavily on the use of viral vectors. Here we explored the use of extracellular vesicles (EVs) derived from human dermal fibroblasts (HDFs) as novel non-viral carriers of endocrine cell-patterning transcription factors, to transfect and transdifferentiate pancreatic ductal epithelial cells (PDCs) into hormone-expressing cells. Electrotransfection of HDFs with expression plasmids for Pdx1, Ngn3, and MafA (PNM) led to the release of EVs loaded with PNM at the gene, mRNA, and protein level. Exposing PDC cultures to PNM-loaded EVs led to successful transfection and increased PNM expression in PDCs, which ultimately resulted in endocrine cell-directed conversions based on the expression of insulin/c-peptide, glucagon, and glucose transporter 2 (Glut2). These findings were further corroborated in vivo in a mouse model following intraductal injection of PNM- vs sham-loaded EVs. Collectively these findings suggest that dermal fibroblast-derived EVs could potentially serve as a powerful platform technology for the development and deployment of non-viral reprogramming-based cell therapies for insulin-dependent diabetes.
Collapse
Affiliation(s)
| | - Elizabeth Guilfoyle
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH
| | | | | | - Luke R. Lemmerman
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH
| | | | - William Lawrence
- Biomedical Science Graduate Program, The Ohio State University, Columbus, OH
| | - Jill L Buss
- Department of Hematology and the Bloomfield Center for Leukemia Outcomes Research, The Ohio State University, Columbus, OH
| | - Binbin Deng
- Center for Electron Microscopy and Analysis (CEMAS), The Ohio State University, Columbus, OH
| | - Britani N. Blackstone
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH
| | - Ana Salazar-Puerta
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH
| | - David W. McComb
- Center for Electron Microscopy and Analysis (CEMAS), The Ohio State University, Columbus, OH
| | - Heather Powell
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH
- Shriners Hospitals-Ohio, Dayton, OH 45404, USA
| | - Daniel Gallego-Perez
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH
- Department of Surgery, -The Ohio State University, Columbus, OH
| | - Natalia Higuita-Castro
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH
- Department of Surgery, -The Ohio State University, Columbus, OH
| |
Collapse
|
3
|
Salazar-Puerta AI, Rincon-Benavides MA, Cuellar-Gaviria TZ, Aldana J, Martinez GV, Ortega-Pineda L, Das D, Dodd D, Spencer CA, Deng B, McComb DW, Englert JA, Ghadiali S, Zepeda-Orozco D, Wold LE, Gallego-Perez D, Higuita-Castro N. Engineered Extracellular Vesicles Derived from Dermal Fibroblasts Attenuate Inflammation in a Murine Model of Acute Lung Injury. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210579. [PMID: 37119468 PMCID: PMC10573710 DOI: 10.1002/adma.202210579] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/29/2023] [Indexed: 06/06/2023]
Abstract
Acute respiratory distress syndrome (ARDS) represents a significant burden to the healthcare system, with ≈200 000 cases diagnosed annually in the USA. ARDS patients suffer from severe refractory hypoxemia, alveolar-capillary barrier dysfunction, impaired surfactant function, and abnormal upregulation of inflammatory pathways that lead to intensive care unit admission, prolonged hospitalization, and increased disability-adjusted life years. Currently, there is no cure or FDA-approved therapy for ARDS. This work describes the implementation of engineered extracellular vesicle (eEV)-based nanocarriers for targeted nonviral delivery of anti-inflammatory payloads to the inflamed/injured lung. The results show the ability of surfactant protein A (SPA)-functionalized IL-4- and IL-10-loaded eEVs to promote intrapulmonary retention and reduce inflammation, both in vitro and in vivo. Significant attenuation is observed in tissue damage, proinflammatory cytokine secretion, macrophage activation, influx of protein-rich fluid, and neutrophil infiltration into the alveolar space as early as 6 h post-eEVs treatment. Additionally, metabolomics analyses show that eEV treatment causes significant changes in the metabolic profile of inflamed lungs, driving the secretion of key anti-inflammatory metabolites. Altogether, these results establish the potential of eEVs derived from dermal fibroblasts to reduce inflammation, tissue damage, and the prevalence/progression of injury during ARDS via nonviral delivery of anti-inflammatory genes/transcripts.
Collapse
Affiliation(s)
- Ana I. Salazar-Puerta
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
| | - María A. Rincon-Benavides
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
- Biophysics Program, The Ohio State University, Columbus, Ohio, United States
| | | | - Julian Aldana
- Biochemistry Program, The Ohio State University, Columbus, Ohio, United States
| | - Gabriela Vasquez Martinez
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, United States
| | - Lilibeth Ortega-Pineda
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Devleena Das
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Daniel Dodd
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
- Biomedical Science Graduate Program, The Ohio State University, Columbus, Ohio, United States
| | - Charles A. Spencer
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University, Columbus, Ohio, United States
| | - Binbin Deng
- Center for Electron Microscopy and Analysis (CEMAS), The Ohio State University, Columbus, Ohio, United States
| | - David W. McComb
- Center for Electron Microscopy and Analysis (CEMAS), The Ohio State University, Columbus, Ohio, United States
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Joshua A. Englert
- Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Samir Ghadiali
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
- Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Diana Zepeda-Orozco
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, United States
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States
- Division of Pediatric Nephrology and Hypertension, Nationwide Children’s Hospital, Columbus, Ohio, United States
| | - Loren E. Wold
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University, Columbus, Ohio, United States
| | - Daniel Gallego-Perez
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
- Biophysics Program, The Ohio State University, Columbus, Ohio, United States
- Division of General Surgery, Department of Surgery, The Ohio State University, Columbus, Ohio, United States
| | - Natalia Higuita-Castro
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
- Biophysics Program, The Ohio State University, Columbus, Ohio, United States
- Division of General Surgery, Department of Surgery, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
4
|
Rincon-Benavides MA, Mendonca NC, Cuellar-Gaviria TZ, Salazar-Puerta AI, Ortega-Pineda L, Blackstone BN, Deng B, McComb DW, Gallego-Perez D, Powell HM, Higuita-Castro N. Engineered Vasculogenic Extracellular Vesicles Drive Nonviral Direct Conversions of Human Dermal Fibroblasts into Induced Endothelial Cells and Improve Wound Closure. ADVANCED THERAPEUTICS 2023; 6:2200197. [PMID: 37577183 PMCID: PMC10416766 DOI: 10.1002/adtp.202200197] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 08/15/2023]
Abstract
Vasculogenic cell therapies have emerged as a powerful tool to increase vascularization and promote tissue repair/regeneration. Current approaches to cell therapies, however, rely mostly on progenitor cells, which pose significant risks (e.g., uncontrolled differentiation, tumorigenesis, and genetic/epigenetic abnormalities). Moreover, reprogramming methodologies used to generate induced endothelial cells (iECs) from induced pluripotent stem cells rely heavily on viral vectors, which pose additional translational limitations. This work describes the development of engineered human extracellular vesicles (EVs) capable of driving reprogramming-based vasculogenic therapies without the need for progenitor cells and/or viral vectors. The EVs were derived from primary human dermal fibroblasts (HDFs), and were engineered to pack transcription factor genes/transcripts of ETV2, FLI1, and FOXC2 (EFF). Our results indicate that in addition of EFF, the engineered EVs were also loaded with transcripts of angiogenic factors (e.g., VEGF-A, VEGF-KDR, FGF2). In vitro and in vivo studies indicate that such EVs effectively transfected HDFs and drove direct conversions towards iECs within 7-14 days. Finally, wound healing studies in mice indicate that engineered EVs lead to improved wound closure and vascularity. Altogether, our results show the potential of engineered human vasculogenic EVs to drive direct reprogramming processes of somatic cells towards iECs, and facilitate tissue repair/regeneration.
Collapse
Affiliation(s)
- Maria A. Rincon-Benavides
- Biophysics Graduate Program, The Ohio State University, Columbus, OH
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH
| | | | | | | | | | - Britani N. Blackstone
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH
| | - Binbin Deng
- Center for Electron Microscopy and Analysis (CEMAS), The Ohio State University, Columbus, OH
| | - David W McComb
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH
- Center for Electron Microscopy and Analysis (CEMAS), The Ohio State University, Columbus, OH
| | - Daniel Gallego-Perez
- Biophysics Graduate Program, The Ohio State University, Columbus, OH
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH
- Department of Surgery, The Ohio State University, Columbus, OH
| | - Heather M. Powell
- Biophysics Graduate Program, The Ohio State University, Columbus, OH
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH
| | - Natalia Higuita-Castro
- Biophysics Graduate Program, The Ohio State University, Columbus, OH
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH
- Department of Surgery, The Ohio State University, Columbus, OH
| |
Collapse
|
5
|
Duarte-Sanmiguel S, Panic A, Dodd DJ, Salazar-Puerta A, Moore JT, Lawrence WR, Nairon K, Francis C, Zachariah N, McCoy W, Turaga R, Skardal A, Carson WE, Higuita-Castro N, Gallego-Perez D. In Situ Deployment of Engineered Extracellular Vesicles into the Tumor Niche via Myeloid-Derived Suppressor Cells. Adv Healthc Mater 2022; 11:e2101619. [PMID: 34662497 PMCID: PMC8891033 DOI: 10.1002/adhm.202101619] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/26/2021] [Indexed: 12/19/2022]
Abstract
Extracellular vesicles (EVs) have emerged as a promising carrier system for the delivery of therapeutic payloads in multiple disease models, including cancer. However, effective targeting of EVs to cancerous tissue remains a challenge. Here, it is shown that nonviral transfection of myeloid-derived suppressor cells (MDSCs) can be leveraged to drive targeted release of engineered EVs that can modulate transfer and overexpression of therapeutic anticancer genes in tumor cells and tissue. MDSCs are immature immune cells that exhibit enhanced tropism toward tumor tissue and play a role in modulating tumor progression. Current MDSC research has been mostly focused on mitigating immunosuppression in the tumor niche; however, the tumor homing abilities of these cells present untapped potential to deliver EV therapeutics directly to cancerous tissue. In vivo and ex vivo studies with murine models of breast cancer show that nonviral transfection of MDSCs does not hinder their ability to home to cancerous tissue. Moreover, transfected MDSCs can release engineered EVs and mediate antitumoral responses via paracrine signaling, including decreased invasion/metastatic activity and increased apoptosis/necrosis. Altogether, these findings indicate that MDSCs can be a powerful tool for the deployment of EV-based therapeutics to tumor tissue.
Collapse
Affiliation(s)
| | - Ana Panic
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210
| | - Daniel J. Dodd
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210
- The Ohio State University, Biomedical Sciences Graduate Program, Columbus, OH 43210
| | - Ana Salazar-Puerta
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210
| | - Jordan T. Moore
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210
| | - William R. Lawrence
- The Ohio State University, Biomedical Sciences Graduate Program, Columbus, OH 43210
| | - Kylie Nairon
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210
| | - Carlie Francis
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210
| | - Natalie Zachariah
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210
| | - William McCoy
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210
| | - Rithvik Turaga
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210
| | - Aleksander Skardal
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210
| | - William E. Carson
- The Ohio State University, Department of Surgery, Columbus, OH 43210
| | - Natalia Higuita-Castro
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210
- The Ohio State University, Department of Surgery, Columbus, OH 43210
- The Ohio State University, Biophysics Program, OH 43210
| | - Daniel Gallego-Perez
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210
- The Ohio State University, Department of Surgery, Columbus, OH 43210
| |
Collapse
|
6
|
Ortega-Pineda L, Sunyecz A, Salazar-Puerta AI, Rincon-Benavides MA, Alzate-Correa D, Anaparthi AL, Guilfoyle E, Mezache L, Struckman HL, Duarte-Sanmiguel S, Deng B, McComb DW, Dodd D, Lawrence WR, Moore J, Zhang J, Reátegui E, Veeraraghavan R, Nelson MT, Gallego-Perez D, Higuita-Castro N. Designer Extracellular Vesicles Modulate Pro-Neuronal Cell Responses and Improve Intracranial Retention. Adv Healthc Mater 2022; 11:e2100805. [PMID: 35014204 PMCID: PMC9466406 DOI: 10.1002/adhm.202100805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 12/28/2021] [Indexed: 12/11/2022]
Abstract
Gene/oligonucleotide therapies have emerged as a promising strategy for the treatment of different neurological conditions. However, current methodologies for the delivery of neurogenic/neurotrophic cargo to brain and nerve tissue are fraught with caveats, including reliance on viral vectors, potential toxicity, and immune/inflammatory responses. Moreover, delivery to the central nervous system is further compounded by the low permeability of the blood brain barrier. Extracellular vesicles (EVs) have emerged as promising delivery vehicles for neurogenic/neurotrophic therapies, overcoming many of the limitations mentioned above. However, the manufacturing processes used for therapeutic EVs remain poorly understood. Here, we conducted a detailed study of the manufacturing process of neurogenic EVs by characterizing the nature of cargo and surface decoration, as well as the transfer dynamics across donor cells, EVs, and recipient cells. Neurogenic EVs loaded with Ascl1, Brn2, and Myt1l (ABM) are found to show enhanced neuron-specific tropism, modulate electrophysiological activity in neuronal cultures, and drive pro-neurogenic conversions/reprogramming. Moreover, murine studies demonstrate that surface decoration with glutamate receptors appears to mediate enhanced EV delivery to the brain. Altogether, the results indicate that ABM-loaded designer EVs can be a promising platform nanotechnology to drive pro-neuronal responses, and that surface functionalization with glutamate receptors can facilitate the deployment of EVs to the brain.
Collapse
Affiliation(s)
- Lilibeth Ortega-Pineda
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Alec Sunyecz
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Ana I. Salazar-Puerta
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
| | | | - Diego Alzate-Correa
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
| | | | - Ellie Guilfoyle
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Louisa Mezache
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Heather L. Struckman
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Silvia Duarte-Sanmiguel
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Binbin Deng
- Center for Electron Microscopy and Analysis (CEMAS), The Ohio State University, Columbus, Ohio, United States
| | - David W. McComb
- Center for Electron Microscopy and Analysis (CEMAS), The Ohio State University, Columbus, Ohio, United States
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel Dodd
- Biomedical Science Graduate Program, The Ohio State University, Columbus, Ohio, United States
| | - William R. Lawrence
- Biomedical Science Graduate Program, The Ohio State University, Columbus, Ohio, United States
| | - Jordan Moore
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Jingjing Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Eduardo Reátegui
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, United States
| | | | - M. Tyler Nelson
- Air Force Research Laboratory, 711th Human Performance Wing, Wright-Patterson Air Force Base, Ohio, United States
| | - Daniel Gallego-Perez
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
- Department of Surgery, The Ohio State University, Columbus, Ohio, United States
| | - Natalia Higuita-Castro
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
- Department of Surgery, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|