1
|
Basnet S, Van der Heijden M, Quixabeira DCA, Jirovec E, Grönberg-Vähä-Koskela SAM, Clubb JHA, Kanerva A, Pakola S, Haybout L, Arias V, Hemminki O, Kudling T, Zafar S, Cervera-Carrascon V, Santos JM, Hemminki A. Overcoming effector T cell exhaustion in ovarian cancer ascites with a novel adenovirus encoding for a MUC1 bispecific antibody engager and IL-2 cytokine. Mol Ther 2024; 32:3114-3127. [PMID: 38910324 PMCID: PMC11403222 DOI: 10.1016/j.ymthe.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/18/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024] Open
Abstract
T cell-focused cancer immunotherapy including checkpoint inhibitors and cell therapies has been rapidly evolving over the past decade. Nevertheless, there remains a major unmet medical need in oncology generally and immuno-oncology specifically. We have constructed an oncolytic adenovirus, Ad5/3-E2F-d24-aMUC1aCD3-IL-2 (TILT-322), which is armed with a human aMUC1aCD3 T cell engager and IL-2. TILT-322 treatment stimulated T cell cytotoxicity through the increased presence of granzyme B, perforin, and interferon-gamma. Additional immune profiling indicated TILT-322 increased gamma delta T cell activation and impacted other cell types such as natural killer cells and natural killer-like T cells that are traditionally involved in cancer immunotherapy. TILT-322 treatment also decreased the proportion of exhausted CD8+ T cells as demarked by immune checkpoint expression in ovarian ascites samples. Overall, our data showed that TILT-322 treatment led to an enhanced T cell activation and reversed T cell exhaustion translating into high antitumor efficacy when given locally or intravenously. The analysis of blood and tumors isolated from an in vivo patient-derived ovarian cancer xenograft model suggested TILT-322 mediated tumor control through improved T cell functions. Therefore, TILT-322 is a promising novel anti-tumor agent for clinical translation.
Collapse
Affiliation(s)
- Saru Basnet
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Mirte Van der Heijden
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Dafne C A Quixabeira
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; TILT Biotherapeutics Ltd, Helsinki, Finland; Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Elise Jirovec
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Susanna A M Grönberg-Vähä-Koskela
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Helsinki University Hospital (HUS), Comprehensive Cancer Center, Helsinki, Finland
| | - James H A Clubb
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; TILT Biotherapeutics Ltd, Helsinki, Finland; Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Anna Kanerva
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Gynecology and Obstetrics, Helsinki University Hospital, Helsinki, Finland
| | - Santeri Pakola
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland; Helsinki University Hospital (HUS), Comprehensive Cancer Center, Helsinki, Finland
| | - Lyna Haybout
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; TILT Biotherapeutics Ltd, Helsinki, Finland; Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Victor Arias
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Otto Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Urology, Helsinki University Hospital, Helsinki, Finland
| | - Tatiana Kudling
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Sadia Zafar
- Applied Tumor Genomics HUS Comprehensive Cancer Center, Research Program, Research Program Unit, University of Helsinki, Helsinki, Finland; Department of Pathology, HUSLAB, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Victor Cervera-Carrascon
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Joao M Santos
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; TILT Biotherapeutics Ltd, Helsinki, Finland; Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland; Helsinki University Hospital (HUS), Comprehensive Cancer Center, Helsinki, Finland.
| |
Collapse
|
2
|
Gao X, Liu J, Sun R, Zhang J, Cao X, Zhang Y, Zhao M. Alliance between titans: combination strategies of CAR-T cell therapy and oncolytic virus for the treatment of hematological malignancies. Ann Hematol 2024; 103:2569-2589. [PMID: 37853078 DOI: 10.1007/s00277-023-05488-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023]
Abstract
There have been several clinical studies using chimeric antigen receptor (CAR)-T cell therapy for different hematological malignancies. It has transformed the therapy landscape for hematologic malignancies dramatically. Nonetheless, in acute myeloid leukemia (AML) and T cell malignancies, it still has a dismal prognosis. Even in the most promising locations, recurrence with CAR-T treatment remains a big concern. Oncolytic viruses (OVs) can directly lyse tumor cells or cause immune responses, and they can be manipulated to create therapeutic proteins, increasing anticancer efficacy. Oncolytic viruses have been proven in a rising number of studies to be beneficial in hematological malignancies. There are limitations that cannot be avoided by using either treatment alone, and the combination of CAR-T cell therapy and oncolytic virus therapy may complement the disadvantages of individual application, enhance the advantages of their respective treatment methods and improve the treatment effect. The alternatives for combining two therapies in hematological malignancies are discussed in this article.
Collapse
Affiliation(s)
- Xuejin Gao
- Emergency, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Jile Liu
- First Center Clinic College of Tianjin Medical University, Tianjin, 300192, China
| | - Rui Sun
- Nankai University School of Medicine, Tianjin, 300192, China
| | - Jingkun Zhang
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Xinping Cao
- First Center Clinic College of Tianjin Medical University, Tianjin, 300192, China
| | - Yi Zhang
- First Center Clinic College of Tianjin Medical University, Tianjin, 300192, China
| | - Mingfeng Zhao
- Department of Hematology, Tianjin First Central Hospital, Tianjin, 300192, China.
| |
Collapse
|
3
|
Wan PKT, Ryan AJ, Seymour LW. Beyond cancer cells: Targeting the tumor microenvironment with gene therapy and armed oncolytic virus. Mol Ther 2021; 29:1668-1682. [PMID: 33845199 PMCID: PMC8116634 DOI: 10.1016/j.ymthe.2021.04.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/08/2021] [Accepted: 04/06/2021] [Indexed: 01/17/2023] Open
Abstract
Cancer gene therapies are usually designed either to express wild-type copies of tumor suppressor genes or to exploit tumor-associated phenotypic changes to endow selective cytotoxicity. However, these approaches become less relevant to cancers that contain many independent mutations, and the situation is made more complex by our increased understanding of clonal evolution of tumors, meaning that different metastases and even regions of the same tumor mass have distinct mutational and phenotypic profiles. In contrast, the relatively genetically stable tumor microenvironment (TME) therefore provides an appealing therapeutic target, particularly since it plays an essential role in promoting cancer growth, immune tolerance, and acquired resistance to many therapies. Recently, a variety of different TME-targeted gene therapy and armed oncolytic strategies have been explored, with particular success observed in strategies targeting the cancer stroma, reducing tumor vasculature, and repolarizing the immunosuppressive microenvironment. Herein, we review the progress of these TME-targeting approaches and try to highlight those showing the greatest promise.
Collapse
Affiliation(s)
| | - Anderson J Ryan
- Department Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | | |
Collapse
|
4
|
Heidbuechel JPW, Engeland CE. Oncolytic viruses encoding bispecific T cell engagers: a blueprint for emerging immunovirotherapies. J Hematol Oncol 2021; 14:63. [PMID: 33863363 PMCID: PMC8052795 DOI: 10.1186/s13045-021-01075-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/30/2021] [Indexed: 02/08/2023] Open
Abstract
Bispecific T cell engagers (BiTEs) are an innovative class of immunotherapeutics that redirect T cells to tumor surface antigens. While efficacious against certain hematological malignancies, limited bioavailability and severe toxicities have so far hampered broader clinical application, especially against solid tumors. Another emerging cancer immunotherapy are oncolytic viruses (OVs) which selectively infect and replicate in malignant cells, thereby mediating tumor vaccination effects. These oncotropic viruses can serve as vectors for tumor-targeted immunomodulation and synergize with other immunotherapies. In this article, we discuss the use of OVs to overcome challenges in BiTE therapy. We review the current state of the field, covering published preclinical studies as well as ongoing clinical investigations. We systematically introduce OV-BiTE vector design and characteristics as well as evidence for immune-stimulating and anti-tumor effects. Moreover, we address additional combination regimens, including CAR T cells and immune checkpoint inhibitors, and further strategies to modulate the tumor microenvironment using OV-BiTEs. The inherent complexity of these novel therapeutics highlights the importance of translational research including correlative studies in early-phase clinical trials. More broadly, OV-BiTEs can serve as a blueprint for diverse OV-based cancer immunotherapies.
Collapse
Affiliation(s)
- Johannes P W Heidbuechel
- Research Group Mechanisms of Oncolytic Immunotherapy, Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Christine E Engeland
- Research Group Mechanisms of Oncolytic Immunotherapy, Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany.
- Department of Medical Oncology, University Hospital Heidelberg, Heidelberg, Germany.
- Center for Biomedical Research and Education (ZBAF), School of Medicine, Institute of Virology and Microbiology, Faculty of Health, Witten/Herdecke University, Witten, Germany.
| |
Collapse
|
5
|
Khalique H, Baugh R, Dyer A, Scott EM, Frost S, Larkin S, Lei-Rossmann J, Seymour LW. Oncolytic herpesvirus expressing PD-L1 BiTE for cancer therapy: exploiting tumor immune suppression as an opportunity for targeted immunotherapy. J Immunother Cancer 2021; 9:e001292. [PMID: 33820820 PMCID: PMC8026026 DOI: 10.1136/jitc-2020-001292] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Programmed death-ligand 1 (PD-L1) is an important immune checkpoint protein that can be regarded as a pan-cancer antigen expressed by multiple different cell types within the tumor. While antagonizing PD-L1 is well known to relieve PD-1/PD-L1-mediated T cell suppression, here we have combined this approach with an immunotherapy strategy to target T cell cytotoxicity directly toward PD-L1-expressing cells. We developed a bi-specific T cell engager (BiTE) crosslinking PD-L1 and CD3ε and demonstrated targeted cytotoxicity using a clinically relevant patient-derived ascites model. This approach represents an immunological 'volte-face' whereby a tumor immunological defense mechanism can be instantly transformed into an Achilles' heel for targeted immunotherapy. METHODS The PD-L1 targeting BiTE comprises an anti-PD-L1 single-chain variable fragment (scFv) or nanobody (NB) domain and an anti-CD3 scFv domain in a tandem repeat. The ability to activate T cell cytotoxicity toward PD-L1-expressing cells was established using human carcinoma cells and PD-L1-expressing human ('M2') macrophages in the presence of autologous T cells. Furthermore, we armed oncolytic herpes simplex virus-1 (oHSV-1) with PD-L1 BiTE and demonstrated successful delivery and targeted cytotoxicity in unpurified cultures of malignant ascites derived from different cancer patients. RESULTS PD-L1 BiTE crosslinks PD-L1-positive cells and CD3ε on T cells in a 'pseudo-synapse' and triggers T cell activation and release of proinflammatory cytokines such as interferon-gamma (IFN-γ), interferon gamma-induced protein 10 (IP-10) and tumour necrosis factor-α (TNF-α). Activation of endogenous T cells within ascites samples led to significant lysis of tumor cells and M2-like macrophages (CD11b+CD64+ and CD206+/CD163+). The survival of CD3+ T cells (which can also express PD-L1) was unaffected. Intriguingly, ascites fluid that appeared particularly immunosuppressive led to higher expression of PD-L1 on tumor cells, resulting in improved BiTE-mediated T cell activation. CONCLUSIONS The study reveals that PD-L1 BiTE is an effective immunotherapeutic approach to kill PD-L1-positive tumor cells and macrophages while leaving T cells unharmed. This approach activates endogenous T cells within malignant ascites, generates a proinflammatory response and eliminates cells promoting tumor progression. Using an oncolytic virus for local expression of PD-L1 BiTE also prevents 'on-target off-tumor' systemic toxicities and harnesses immunosuppressive protumor conditions to augment immunotherapy in immunologically 'cold' clinical cancers.
Collapse
MESH Headings
- Animals
- Antibodies, Bispecific/genetics
- Antibodies, Bispecific/immunology
- Antibodies, Bispecific/metabolism
- B7-H1 Antigen/immunology
- B7-H1 Antigen/metabolism
- CD3 Complex/immunology
- CD3 Complex/metabolism
- Cell Line, Tumor
- Chlorocebus aethiops
- Coculture Techniques
- Cytokines/metabolism
- Cytotoxicity, Immunologic
- HEK293 Cells
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Human/immunology
- Herpesvirus 1, Human/metabolism
- Humans
- Lymphocyte Activation
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Neoplasms/immunology
- Neoplasms/metabolism
- Neoplasms/therapy
- Neoplasms/virology
- Oncolytic Virotherapy
- Oncolytic Viruses/genetics
- Oncolytic Viruses/immunology
- Oncolytic Viruses/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tumor Microenvironment
- Tumor-Associated Macrophages/immunology
- Tumor-Associated Macrophages/metabolism
- Vero Cells
Collapse
Affiliation(s)
- Hena Khalique
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | - Richard Baugh
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | - Arthur Dyer
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | - Eleanor M Scott
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | - Sally Frost
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | - Sarah Larkin
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | | | - Leonard W Seymour
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| |
Collapse
|
6
|
Hartley A, Kavishwar G, Salvato I, Marchini A. A Roadmap for the Success of Oncolytic Parvovirus-Based Anticancer Therapies. Annu Rev Virol 2020; 7:537-557. [PMID: 32600158 DOI: 10.1146/annurev-virology-012220-023606] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Autonomous rodent protoparvoviruses (PVs) are promising anticancer agents due to their excellent safety profile, natural oncotropism, and oncosuppressive activities. Viral infection can trigger immunogenic cell death, activating the immune system against the tumor. However, the efficacy of this treatment in recent clinical trials is moderate compared with results seen in preclinical work. Various strategies have been employed to improve the anticancer activities of oncolytic PVs, including development of second-generation parvoviruses with enhanced oncolytic and immunostimulatory activities and rational combination of PVs with other therapies. Understanding the cellular factors involved in the PV life cycle is another important area of investigation. Indeed, these studies may lead to the identification of biomarkers that would allow a more personalized use of PV-based therapies. This review focuses on this work and the challenges that still need to be overcome to move PVs forward into clinical practice as an effective therapeutic option for cancer patients.
Collapse
Affiliation(s)
- Anna Hartley
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, 69120 Heidelberg, Germany;
| | - Gayatri Kavishwar
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, 69120 Heidelberg, Germany;
| | - Ilaria Salvato
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg;
| | - Antonio Marchini
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, 69120 Heidelberg, Germany; .,Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg;
| |
Collapse
|