1
|
Lou M. Systemic trafficking of macrophages in implant wear debris-induced periprosthetic osteolysis. SLAS Technol 2025; 31:100254. [PMID: 39914493 DOI: 10.1016/j.slast.2025.100254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/15/2025] [Accepted: 02/03/2025] [Indexed: 02/24/2025]
Abstract
Periprosthetic osteolysis (PPOL) is a significant complication post-joint replacement, often instigated by implant wear debris, leading to chronic inflammation and bone resorption. Herein, this review summarizes the immune mechanisms of PPOL, specifically, the processes where macrophages are recruited by implant wear debris, the mechanisms by which macrophages trigger inflammatory cascades, and the role of chemokines that facilitate macrophage migration, including CCL2, CCL3, CCL4, CCL5, CXCL8, CX3CL1, and XCL1. This review highlights novel findings on these processes and suggests that illustrating these mechanisms offers promising avenues for future therapeutic strategies to prevent and treat PPOL, such as the potential use of anti-inflammatory drugs.
Collapse
Affiliation(s)
- Mengyun Lou
- Department of General Practice, Shanghai Sixth People's Hospital, Shanghai 200233, China.
| |
Collapse
|
2
|
Windisch R, Soliman S, Hoffmann A, Chen-Wichmann L, Danese A, Vosberg S, Bravo J, Lutz S, Kellner C, Fischer A, Gebhard C, Redondo Monte E, Hartmann L, Schneider S, Beier F, Strobl CD, Weigert O, Peipp M, Schündeln M, Stricker SH, Rehli M, Bernhagen J, Humpe A, Klump H, Brendel C, Krause DS, Greif PA, Wichmann C. Engineering an inducible leukemia-associated fusion protein enables large-scale ex vivo production of functional human phagocytes. Proc Natl Acad Sci U S A 2024; 121:e2312499121. [PMID: 38857395 PMCID: PMC11194515 DOI: 10.1073/pnas.2312499121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/20/2024] [Indexed: 06/12/2024] Open
Abstract
Ex vivo expansion of human CD34+ hematopoietic stem and progenitor cells remains a challenge due to rapid differentiation after detachment from the bone marrow niche. In this study, we assessed the capacity of an inducible fusion protein to enable sustained ex vivo proliferation of hematopoietic precursors and their capacity to differentiate into functional phagocytes. We fused the coding sequences of an FK506-Binding Protein 12 (FKBP12)-derived destabilization domain (DD) to the myeloid/lymphoid lineage leukemia/eleven nineteen leukemia (MLL-ENL) fusion gene to generate the fusion protein DD-MLL-ENL and retrovirally expressed the protein switch in human CD34+ progenitors. Using Shield1, a chemical inhibitor of DD fusion protein degradation, we established large-scale and long-term expansion of late monocytic precursors. Upon Shield1 removal, the cells lost self-renewal capacity and spontaneously differentiated, even after 2.5 y of continuous ex vivo expansion. In the absence of Shield1, stimulation with IFN-γ, LPS, and GM-CSF triggered terminal differentiation. Gene expression analysis of the obtained phagocytes revealed marked similarity with naïve monocytes. In functional assays, the novel phagocytes migrated toward CCL2, attached to VCAM-1 under shear stress, produced reactive oxygen species, and engulfed bacterial particles, cellular particles, and apoptotic cells. Finally, we demonstrated Fcγ receptor recognition and phagocytosis of opsonized lymphoma cells in an antibody-dependent manner. Overall, we have established an engineered protein that, as a single factor, is useful for large-scale ex vivo production of human phagocytes. Such adjustable proteins have the potential to be applied as molecular tools to produce functional immune cells for experimental cell-based approaches.
Collapse
Affiliation(s)
- Roland Windisch
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
| | - Sarah Soliman
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
| | - Adrian Hoffmann
- Vascular Biology, Institute for Stroke and Dementia Research, Ludwig-Maximilians-Universität München, Munich81377, Germany
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
| | - Linping Chen-Wichmann
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
| | - Anna Danese
- Biomedical Center, Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Munich81377, Germany
| | - Sebastian Vosberg
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
- German Cancer Consortium, Partner site Munich, Munich81377, Germany
- German Cancer Research Center, Heidelberg69120, Germany
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz8010, Austria
| | - Jimena Bravo
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main60596, Germany
| | - Sebastian Lutz
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
| | - Christian Kellner
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
| | - Alexander Fischer
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg93053, Germany
| | - Claudia Gebhard
- Leibniz Institute for Immunotherapy, Regensburg93053, Germany
| | - Enric Redondo Monte
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
- German Cancer Consortium, Partner site Munich, Munich81377, Germany
- German Cancer Research Center, Heidelberg69120, Germany
| | - Luise Hartmann
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
- German Cancer Consortium, Partner site Munich, Munich81377, Germany
- German Cancer Research Center, Heidelberg69120, Germany
| | - Stephanie Schneider
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
- Institute of Human Genetics, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
| | - Fabian Beier
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen52074, Germany
| | - Carolin Dorothea Strobl
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
- German Cancer Consortium, Partner site Munich, Munich81377, Germany
- German Cancer Research Center, Heidelberg69120, Germany
| | - Oliver Weigert
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
- German Cancer Consortium, Partner site Munich, Munich81377, Germany
- German Cancer Research Center, Heidelberg69120, Germany
| | - Matthias Peipp
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian Albrechts University of Kiel, Kiel24105, Germany
| | - Michael Schündeln
- Pediatric Hematology and Oncology, Department of Pediatrics III, University Hospital Essen and the University of Duisburg-Essen, Essen45147, Germany
| | - Stefan H. Stricker
- Biomedical Center, Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Munich81377, Germany
| | - Michael Rehli
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg93053, Germany
- Leibniz Institute for Immunotherapy, Regensburg93053, Germany
| | - Jürgen Bernhagen
- Vascular Biology, Institute for Stroke and Dementia Research, Ludwig-Maximilians-Universität München, Munich81377, Germany
- Munich Cluster for Systems Neurology, Munich81377, Germany
| | - Andreas Humpe
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
| | - Hannes Klump
- Institute for Transfusion Medicine, University Hospital Essen, Essen45147, Germany
- Institute for Transfusion Medicine and Cell Therapeutics, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen52074, Germany
| | - Christian Brendel
- Division of Pediatric Hematology/Oncology, Boston Children’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA02115
| | - Daniela S. Krause
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main60596, Germany
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe-University, Frankfurt am Main60596, Germany
| | - Philipp A. Greif
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
- German Cancer Consortium, Partner site Munich, Munich81377, Germany
- German Cancer Research Center, Heidelberg69120, Germany
| | - Christian Wichmann
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
| |
Collapse
|
3
|
Crespo-Avilan GE, Hernandez-Resendiz S, Ramachandra CJ, Ungureanu V, Lin YH, Lu S, Bernhagen J, El Bounkari O, Preissner KT, Liehn EA, Hausenloy DJ. Metabolic reprogramming of immune cells by mitochondrial division inhibitor-1 to prevent post-vascular injury neointimal hyperplasia. Atherosclerosis 2024; 390:117450. [PMID: 38266625 DOI: 10.1016/j.atherosclerosis.2024.117450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/23/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND AND AIMS New treatments are needed to prevent neointimal hyperplasia that contributes to post-angioplasty and stent restenosis in patients with coronary artery disease (CAD) and peripheral arterial disease (PAD). We investigated whether modulating mitochondrial function using mitochondrial division inhibitor-1 (Mdivi-1) could reduce post-vascular injury neointimal hyperplasia by metabolic reprogramming of macrophages from a pro-inflammatory to anti-inflammatory phenotype. METHODS AND RESULTS In vivo Mdivi-1 treatment of Apoe-/- mice fed a high-fat diet and subjected to carotid-wire injury decreased neointimal hyperplasia by 68%, reduced numbers of plaque vascular smooth muscle cells and pro-inflammatory M1-like macrophages, and decreased plaque inflammation, endothelial activation, and apoptosis, when compared to control. Mdivi-1 treatment of human THP-1 macrophages shifted polarization from a pro-inflammatory M1-like to an anti-inflammatory M2-like phenotype, reduced monocyte chemotaxis and migration to CCL2 and macrophage colony stimulating factor (M-CSF) and decreased secretion of pro-inflammatory mediators. Finally, treatment of pro-inflammatory M1-type-macrophages with Mdivi-1 metabolically reprogrammed them to an anti-inflammatory M2-like phenotype by inhibiting oxidative phosphorylation and attenuating the increase in succinate levels and correcting the decreased levels of arginine and citrulline. CONCLUSIONS We report that treatment with Mdivi-1 inhibits post-vascular injury neointimal hyperplasia by metabolic reprogramming macrophages towards an anti-inflammatory phenotype thereby highlighting the therapeutic potential of Mdivi-1 for preventing neointimal hyperplasia and restenosis following angioplasty and stenting in CAD and PAD patients.
Collapse
Affiliation(s)
- Gustavo E Crespo-Avilan
- Department of Biochemistry, Medical Faculty, Justus Liebig-University, Giessen, Germany; Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Sauri Hernandez-Resendiz
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Chrishan J Ramachandra
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Victor Ungureanu
- National Institute of Pathology, "Victor Babes", Bucharest, Romania
| | - Ying-Hsi Lin
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Shengjie Lu
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Jürgen Bernhagen
- Division of Vascular Biology, Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-University, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Munich Heart Alliance, Munich, Germany
| | - Omar El Bounkari
- Division of Vascular Biology, Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Klaus T Preissner
- Department of Biochemistry, Medical Faculty, Justus Liebig-University, Giessen, Germany; Kerckhoff-Heart-Research-Institute, Department of Cardiology, Medical School, Justus-Liebig-University, Giessen, Germany
| | - Elisa A Liehn
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore; National Institute of Pathology, "Victor Babes", Bucharest, Romania; Institute for Molecular Medicine, University of South Denmark, Odense, Denmark.
| | - Derek J Hausenloy
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore; The Hatter Cardiovascular Institute, University College London, London, WC1E 6BT, UK; Yong Loo Lin School of Medicine, National University Singapore, Singapore.
| |
Collapse
|
4
|
Pekayvaz K, Gold C, Hoseinpour P, Engel A, Martinez-Navarro A, Eivers L, Coletti R, Joppich M, Dionísio F, Kaiser R, Tomas L, Janjic A, Knott M, Mehari F, Polewka V, Kirschner M, Boda A, Nicolai L, Schulz H, Titova A, Kilani B, Lorenz M, Fingerle-Rowson G, Bucala R, Enard W, Zimmer R, Weber C, Libby P, Schulz C, Massberg S, Stark K. Mural cell-derived chemokines provide a protective niche to safeguard vascular macrophages and limit chronic inflammation. Immunity 2023; 56:2325-2341.e15. [PMID: 37652021 PMCID: PMC10588993 DOI: 10.1016/j.immuni.2023.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/23/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023]
Abstract
Maladaptive, non-resolving inflammation contributes to chronic inflammatory diseases such as atherosclerosis. Because macrophages remove necrotic cells, defective macrophage programs can promote chronic inflammation with persistent tissue injury. Here, we investigated the mechanisms sustaining vascular macrophages. Intravital imaging revealed a spatiotemporal macrophage niche across vascular beds alongside mural cells (MCs)-pericytes and smooth muscle cells. Single-cell transcriptomics, co-culture, and genetic deletion experiments revealed MC-derived expression of the chemokines CCL2 and MIF, which actively preserved macrophage survival and their homeostatic functions. In atherosclerosis, this positioned macrophages in viable plaque areas, away from the necrotic core, and maintained a homeostatic macrophage phenotype. Disruption of this MC-macrophage unit via MC-specific deletion of these chemokines triggered detrimental macrophage relocalizing, exacerbated plaque necrosis, inflammation, and atheroprogression. In line, CCL2 inhibition at advanced stages of atherosclerosis showed detrimental effects. This work presents a MC-driven safeguard toward maintaining the homeostatic vascular macrophage niche.
Collapse
Affiliation(s)
- Kami Pekayvaz
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.
| | - Christoph Gold
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Parandis Hoseinpour
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Anouk Engel
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany
| | | | - Luke Eivers
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany
| | - Raffaele Coletti
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany
| | - Markus Joppich
- Department of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Flávio Dionísio
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Rainer Kaiser
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Lukas Tomas
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Aleksandar Janjic
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians University, Munich, Germany
| | - Maximilian Knott
- Institute of Pathology, Ludwig-Maximilian University Munich, Munich, Germany
| | - Fitsumbirhan Mehari
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany
| | - Vivien Polewka
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany
| | - Megan Kirschner
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany
| | - Annegret Boda
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany
| | - Leo Nicolai
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Heiko Schulz
- Institute of Pathology, Ludwig-Maximilian University Munich, Munich, Germany
| | - Anna Titova
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany
| | - Badr Kilani
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany
| | - Michael Lorenz
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany
| | | | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Wolfgang Enard
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians University, Munich, Germany
| | - Ralf Zimmer
- Department of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christian Weber
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillian-Universität (LMU) München, Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Peter Libby
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Konstantin Stark
- Medizinische Klinik und Poliklinik I, LMU University Hospital, LMU Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
5
|
ACKR3 regulates platelet activation and ischemia-reperfusion tissue injury. Nat Commun 2022; 13:1823. [PMID: 35383158 PMCID: PMC8983782 DOI: 10.1038/s41467-022-29341-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/25/2022] [Indexed: 12/15/2022] Open
Abstract
Platelet activation plays a critical role in thrombosis. Inhibition of platelet activation is a cornerstone in treatment of acute organ ischemia. Platelet ACKR3 surface expression is independently associated with all-cause mortality in CAD patients. In a novel genetic mouse strain, we show that megakaryocyte/platelet-specific deletion of ACKR3 results in enhanced platelet activation and thrombosis in vitro and in vivo. Further, we performed ischemia/reperfusion experiments (transient LAD-ligation and tMCAO) in mice to assess the impact of genetic ACKR3 deficiency in platelets on tissue injury in ischemic myocardium and brain. Loss of platelet ACKR3 enhances tissue injury in ischemic myocardium and brain and aggravates tissue inflammation. Activation of platelet-ACKR3 via specific ACKR3 agonists inhibits platelet activation and thrombus formation and attenuates tissue injury in ischemic myocardium and brain. Here we demonstrate that ACKR3 is a critical regulator of platelet activation, thrombus formation and organ injury following ischemia/reperfusion. ACKR3 is a critical regulator of platelet-mediated thrombosis and organ injury following ischemia/reperfusion. Platelet ACKR3 surface expression is independently associated with all-cause mortality in patients with cardiovascular diseases.
Collapse
|
6
|
Klemke L, De Oliveira T, Witt D, Winkler N, Bohnenberger H, Bucala R, Conradi LC, Schulz-Heddergott R. Hsp90-stabilized MIF supports tumor progression via macrophage recruitment and angiogenesis in colorectal cancer. Cell Death Dis 2021; 12:155. [PMID: 33542244 PMCID: PMC7862487 DOI: 10.1038/s41419-021-03426-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/02/2021] [Accepted: 01/07/2021] [Indexed: 12/19/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is an upstream regulator of innate immunity, but its expression is increased in some cancers via stabilization with HSP90-associated chaperones. Here, we show that MIF stabilization is tumor-specific in an acute colitis-associated colorectal cancer (CRC) mouse model, leading to tumor-specific functions and selective therapeutic vulnerabilities. Therefore, we demonstrate that a Mif deletion reduced CRC tumor growth. Further, we define a dual role for MIF in CRC tumor progression. Mif deletion protects mice from inflammation-associated tumor initiation, confirming the action of MIF on host inflammatory pathways; however, macrophage recruitment, neoangiogenesis, and proliferative responses are reduced in Mif-deficient tumors once the tumors are established. Thus, during neoplastic transformation, the function of MIF switches from a proinflammatory cytokine to an angiogenesis promoting factor within our experimental model. Mechanistically, Mif-containing tumor cells regulate angiogenic gene expression via a MIF/CD74/MAPK axis in vitro. Clinical correlation studies of CRC patients show the shortest overall survival for patients with high MIF levels in combination with CD74 expression. Pharmacological inhibition of HSP90 to reduce MIF levels decreased tumor growth in vivo, and selectively reduced the growth of organoids derived from murine and human tumors without affecting organoids derived from healthy epithelial cells. Therefore, novel, clinically relevant Hsp90 inhibitors provide therapeutic selectivity by interfering with tumorigenic MIF in tumor epithelial cells but not in normal cells. Furthermore, Mif-depleted colonic tumor organoids showed growth defects compared to wild-type organoids and were less susceptible toward HSP90 inhibitor treatment. Our data support that tumor-specific stabilization of MIF promotes CRC progression and allows MIF to become a potential and selective therapeutic target in CRC.
Collapse
Affiliation(s)
- Luisa Klemke
- Institute of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago De Oliveira
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Daria Witt
- Institute of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Nadine Winkler
- Institute of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Richard Bucala
- Departments of Medicine, Pathology, and Epidemiology & Public Health, Yale School of Medicine and Yale Cancer Center, New Haven, CT, USA
| | - Lena-Christin Conradi
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | | |
Collapse
|