1
|
McCluskey K, Boudreault J, St-Pierre P, Perez-Gonzalez C, Chauvier A, Rizzi A, Beauregard PB, Lafontaine DA, Penedo JC. Unprecedented tunability of riboswitch structure and regulatory function by sub-millimolar variations in physiological Mg2. Nucleic Acids Res 2020; 47:6478-6487. [PMID: 31045204 PMCID: PMC6614840 DOI: 10.1093/nar/gkz316] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 02/06/2023] Open
Abstract
Riboswitches are cis-acting regulatory RNA biosensors that rival the efficiency of those found in proteins. At the heart of their regulatory function is the formation of a highly specific aptamer–ligand complex. Understanding how these RNAs recognize the ligand to regulate gene expression at physiological concentrations of Mg2+ ions and ligand is critical given their broad impact on bacterial gene expression and their potential as antibiotic targets. In this work, we used single-molecule FRET and biochemical techniques to demonstrate that Mg2+ ions act as fine-tuning elements of the amino acid-sensing lysC aptamer's ligand-free structure in the mesophile Bacillus subtilis. Mg2+ interactions with the aptamer produce encounter complexes with strikingly different sensitivities to the ligand in different, yet equally accessible, physiological ionic conditions. Our results demonstrate that the aptamer adapts its structure and folding landscape on a Mg2+-tunable scale to efficiently respond to changes in intracellular lysine of more than two orders of magnitude. The remarkable tunability of the lysC aptamer by sub-millimolar variations in the physiological concentration of Mg2+ ions suggests that some single-aptamer riboswitches have exploited the coupling of cellular levels of ligand and divalent metal ions to tightly control gene expression.
Collapse
Affiliation(s)
- Kaley McCluskey
- SUPA School of Physics and Astronomy, University of St. Andrews, Scotland KY16 9SS, UK
| | - Julien Boudreault
- Département de Biologie, Université de Sherbrooke, Québec, Canada J1K 2R1
| | - Patrick St-Pierre
- Département de Biologie, Université de Sherbrooke, Québec, Canada J1K 2R1
| | - Cibran Perez-Gonzalez
- SUPA School of Physics and Astronomy, University of St. Andrews, Scotland KY16 9SS, UK.,Centre SÈVE, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Adrien Chauvier
- Département de Biologie, Université de Sherbrooke, Québec, Canada J1K 2R1
| | - Adrien Rizzi
- Département de Chimie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Pascale B Beauregard
- Centre SÈVE, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | | | - J Carlos Penedo
- SUPA School of Physics and Astronomy, University of St. Andrews, Scotland KY16 9SS, UK.,Biomedical Sciences Research Complex, School of Biology, University of St. Andrews, Scotland KY16 9ST, UK
| |
Collapse
|
2
|
Dussault AM, Dubé A, Jacques F, Grondin JP, Lafontaine DA. Ligand recognition and helical stacking formation are intimately linked in the SAM-I riboswitch regulatory mechanism. RNA (NEW YORK, N.Y.) 2017; 23:1539-1551. [PMID: 28701520 PMCID: PMC5602112 DOI: 10.1261/rna.061796.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/10/2017] [Indexed: 06/07/2023]
Abstract
Riboswitches are noncoding mRNA elements that control gene expression by altering their structure upon metabolite binding. Although riboswitch crystal structures provide detailed information about RNA-ligand interactions, little knowledge has been gathered to understand how riboswitches modulate gene expression. Here, we study the molecular recognition mechanism of the S-adenosylmethionine SAM-I riboswitch by characterizing the formation of a helical stacking interaction involving the ligand-binding process. We show that ligand binding is intimately linked to the formation of the helical stacking, which is dependent on the presence of three conserved purine residues that are flanked by stacked helices. We also find that these residues are important for the formation of a crucial long-range base pair formed upon SAM binding. Together, our results lend strong support to a critical role for helical stacking in the folding pathway and suggest a particularly important function in the formation of the long-range base pair.
Collapse
Affiliation(s)
- Anne-Marie Dussault
- Department of Biology, Faculty of Sciences, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Audrey Dubé
- Department of Biology, Faculty of Sciences, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Frédéric Jacques
- Department of Biology, Faculty of Sciences, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Jonathan P Grondin
- Department of Biology, Faculty of Sciences, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Daniel A Lafontaine
- Department of Biology, Faculty of Sciences, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| |
Collapse
|
3
|
Roy S, Lammert H, Hayes RL, Chen B, LeBlanc R, Dayie TK, Onuchic JN, Sanbonmatsu KY. A magnesium-induced triplex pre-organizes the SAM-II riboswitch. PLoS Comput Biol 2017; 13:e1005406. [PMID: 28248966 PMCID: PMC5352136 DOI: 10.1371/journal.pcbi.1005406] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/15/2017] [Accepted: 02/14/2017] [Indexed: 12/31/2022] Open
Abstract
Our 13C- and 1H-chemical exchange saturation transfer (CEST) experiments previously revealed a dynamic exchange between partially closed and open conformations of the SAM-II riboswitch in the absence of ligand. Here, all-atom structure-based molecular simulations, with the electrostatic effects of Manning counter-ion condensation and explicit magnesium ions are employed to calculate the folding free energy landscape of the SAM-II riboswitch. We use this analysis to predict that magnesium ions remodel the landscape, shifting the equilibrium away from the extended, partially unfolded state towards a compact, pre-organized conformation that resembles the ligand-bound state. Our CEST and SAXS experiments, at different magnesium ion concentrations, quantitatively confirm our simulation results, demonstrating that magnesium ions induce collapse and pre-organization. Agreement between theory and experiment bolsters microscopic interpretation of our simulations, which shows that triplex formation between helix P2b and loop L1 is highly sensitive to magnesium and plays a key role in pre-organization. Pre-organization of the SAM-II riboswitch allows rapid detection of ligand with high selectivity, which is important for biological function.
Collapse
Affiliation(s)
- Susmita Roy
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
| | - Heiko Lammert
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
| | - Ryan L. Hayes
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
| | - Bin Chen
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, United States of America
| | - Regan LeBlanc
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, United States of America
| | - T. Kwaku Dayie
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, United States of America
| | - José N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
- Departments of Physics and Astronomy, Chemistry, and Biosciences, Rice University, Houston, Texas, United States of America
- * E-mail: (JNO); (KYS)
| | - Karissa Y. Sanbonmatsu
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- New Mexico Consortium, Los Alamos, New Mexico, United States of America
- * E-mail: (JNO); (KYS)
| |
Collapse
|
4
|
Perez-Gonzalez C, Lafontaine DA, Penedo JC. Fluorescence-Based Strategies to Investigate the Structure and Dynamics of Aptamer-Ligand Complexes. Front Chem 2016; 4:33. [PMID: 27536656 PMCID: PMC4971091 DOI: 10.3389/fchem.2016.00033] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/11/2016] [Indexed: 12/11/2022] Open
Abstract
In addition to the helical nature of double-stranded DNA and RNA, single-stranded oligonucleotides can arrange themselves into tridimensional structures containing loops, bulges, internal hairpins and many other motifs. This ability has been used for more than two decades to generate oligonucleotide sequences, so-called aptamers, that can recognize certain metabolites with high affinity and specificity. More recently, this library of artificially-generated nucleic acid aptamers has been expanded by the discovery that naturally occurring RNA sequences control bacterial gene expression in response to cellular concentration of a given metabolite. The application of fluorescence methods has been pivotal to characterize in detail the structure and dynamics of these aptamer-ligand complexes in solution. This is mostly due to the intrinsic high sensitivity of fluorescence methods and also to significant improvements in solid-phase synthesis, post-synthetic labeling strategies and optical instrumentation that took place during the last decade. In this work, we provide an overview of the most widely employed fluorescence methods to investigate aptamer structure and function by describing the use of aptamers labeled with a single dye in fluorescence quenching and anisotropy assays. The use of 2-aminopurine as a fluorescent analog of adenine to monitor local changes in structure and fluorescence resonance energy transfer (FRET) to follow long-range conformational changes is also covered in detail. The last part of the review is dedicated to the application of fluorescence techniques based on single-molecule microscopy, a technique that has revolutionized our understanding of nucleic acid structure and dynamics. We finally describe the advantages of monitoring ligand-binding and conformational changes, one molecule at a time, to decipher the complexity of regulatory aptamers and summarize the emerging folding and ligand-binding models arising from the application of these single-molecule FRET microscopy techniques.
Collapse
Affiliation(s)
- Cibran Perez-Gonzalez
- Laboratory for Biophysics and Biomolecular Dynamics, SUPA School of Physics and Astronomy, University of St. AndrewsSt Andrews, UK
| | - Daniel A. Lafontaine
- RNA Group, Department of Biology, Faculty of Science, Université de SherbrookeSherbrooke, QC, Canada
| | - J. Carlos Penedo
- Laboratory for Biophysics and Biomolecular Dynamics, SUPA School of Physics and Astronomy, University of St. AndrewsSt Andrews, UK
- Laboratory for Biophysics and Biomolecular Dynamics, Biomedical Sciences Research Complex, School of Biology, University of St. AndrewsSt. Andrews, UK
| |
Collapse
|
5
|
McKeague M, Wong RS, Smolke CD. Opportunities in the design and application of RNA for gene expression control. Nucleic Acids Res 2016; 44:2987-99. [PMID: 26969733 PMCID: PMC4838379 DOI: 10.1093/nar/gkw151] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 02/29/2016] [Indexed: 12/15/2022] Open
Abstract
The past decade of synthetic biology research has witnessed numerous advances in the development of tools and frameworks for the design and characterization of biological systems. Researchers have focused on the use of RNA for gene expression control due to its versatility in sensing molecular ligands and the relative ease by which RNA can be modeled and designed compared to proteins. We review the recent progress in the field with respect to RNA-based genetic devices that are controlled through small molecule and protein interactions. We discuss new approaches for generating and characterizing these devices and their underlying components. We also highlight immediate challenges, future directions and recent applications of synthetic RNA devices in engineered biological systems.
Collapse
Affiliation(s)
- Maureen McKeague
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Remus S Wong
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Christina D Smolke
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
6
|
Perez-Gonzalez C, Grondin JP, Lafontaine DA, Carlos Penedo J. Biophysical Approaches to Bacterial Gene Regulation by Riboswitches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 915:157-91. [PMID: 27193543 DOI: 10.1007/978-3-319-32189-9_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The last decade has witnessed the discovery of a variety of non-coding RNA sequences that perform a broad range of crucial biological functions. Among these, the ability of certain RNA sequences, so-called riboswitches, has attracted considerable interest. Riboswitches control gene expression in response to the concentration of particular metabolites to which they bind without the need for any protein. These RNA switches not only need to adopt a very specific tridimensional structure to perform their function, but also their sequence has been evolutionary optimized to recognize a particular metabolite with high affinity and selectivity. Thus, riboswitches offer a unique opportunity to get fundamental insights into RNA plasticity and how folding dynamics and ligand recognition mechanisms have been efficiently merged to control gene regulation. Because riboswitch sequences have been mostly found in bacterial organisms controlling the expression of genes associated to the synthesis, degradation or transport of crucial metabolites for bacterial survival, they offer exciting new routes for antibiotic development in an era where bacterial resistance is more than ever challenging conventional drug discovery strategies. Here, we give an overview of the architecture, diversity and regulatory mechanisms employed by riboswitches with particular emphasis on the biophysical methods currently available to characterise their structure and functional dynamics.
Collapse
Affiliation(s)
- Cibran Perez-Gonzalez
- SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, KY16 9SS, UK
| | - Jonathan P Grondin
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Daniel A Lafontaine
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada.
| | - J Carlos Penedo
- SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, KY16 9SS, UK. .,Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife, KY16 9ST, UK.
| |
Collapse
|
7
|
Shaw E, St-Pierre P, McCluskey K, Lafontaine DA, Penedo JC. Using sm-FRET and denaturants to reveal folding landscapes. Methods Enzymol 2015; 549:313-41. [PMID: 25432755 DOI: 10.1016/b978-0-12-801122-5.00014-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
RNA folding studies aim to clarify the relationship among sequence, tridimensional structure, and biological function. In the last decade, the application of single-molecule fluorescence resonance energy transfer (sm-FRET) techniques to investigate RNA structure and folding has revealed the details of conformational changes and timescale of the process leading to the formation of biologically active RNA structures with subnanometer resolution on millisecond timescales. In this review, we initially summarize the first wave of single-molecule FRET-based RNA techniques that focused on analyzing the influence of mono- and divalent metal ions on RNA function, and how these studies have provided very valuable information about folding pathways and the presence of intermediate and low-populated states. Next, we describe a second generation of single-molecule techniques that combine sm-FRET with the use of chemical denaturants as an emerging powerful approach to reveal information about the dynamics and energetics of RNA folding that remains hidden using conventional sm-FRET approaches. The main advantages of using the competing interplay between folding agents such as metal ions and denaturants to observe and manipulate the dynamics of RNA folding and RNA-ligand interactions is discussed in the context of the adenine riboswitch aptamer.
Collapse
Affiliation(s)
- Euan Shaw
- SUPA School of Physics and Astronomy, University of St. Andrews, St. Andrews, Fife, United Kingdom
| | - Patrick St-Pierre
- RNA Group, Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Kaley McCluskey
- SUPA School of Physics and Astronomy, University of St. Andrews, St. Andrews, Fife, United Kingdom
| | - Daniel A Lafontaine
- RNA Group, Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - J Carlos Penedo
- SUPA School of Physics and Astronomy, University of St. Andrews, St. Andrews, Fife, United Kingdom; Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, Fife, United Kingdom.
| |
Collapse
|
8
|
Boudreault J, Perez-Gonzalez DC, Penedo JC, Lafontaine DA. Single-Molecule Approaches for the Characterization of Riboswitch Folding Mechanisms. Methods Mol Biol 2015; 1334:101-107. [PMID: 26404145 DOI: 10.1007/978-1-4939-2877-4_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Riboswitches are highly structured RNA molecules that control genetic expression by altering their structure as a function of metabolite binding. Accumulating evidence suggests that riboswitch structures are highly dynamic and perform conformational exchange between structural states that are important for the outcome of genetic regulation. To understand how ligand binding influences the folding of riboswitches, it is important to monitor in real time the riboswitch folding pathway as a function of experimental conditions. Single-molecule FRET (sm-FRET) is unique among biophysical techniques to study riboswitch conformational changes as it allows to both monitor steady-state populations of riboswitch conformers and associated interconversion dynamics. Since FRET fluorophores can be attached to virtually any nucleotide position, FRET assays can be adapted to monitor specific conformational changes, thus enabling to deduce complex riboswitch folding pathways. Herein, we show how to employ sm-FRET to study the folding pathway of the S-adenosylmethionine (SAM) and how this can be used to understand very specific conformational changes that are at the heart of riboswitch regulation mechanism.
Collapse
Affiliation(s)
- Julien Boudreault
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada, J1K 2R1
| | | | - J Carlos Penedo
- School of Physics and Astronomy, University of St. Andrews, St. Andrews, UK
| | - Daniel A Lafontaine
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada, J1K 2R1.
| |
Collapse
|
9
|
Perez-Gonzalez DC, Penedo JC. Single-Molecule Strategies for DNA and RNA Diagnostics. RNA TECHNOLOGIES 2015. [DOI: 10.1007/978-3-319-17305-4_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
10
|
St-Pierre P, McCluskey K, Shaw E, Penedo JC, Lafontaine DA. Fluorescence tools to investigate riboswitch structural dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1005-1019. [PMID: 24863161 DOI: 10.1016/j.bbagrm.2014.05.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 11/15/2022]
Abstract
Riboswitches are novel regulatory elements that respond to cellular metabolites to control gene expression. They are constituted of highly conserved domains that have evolved to recognize specific metabolites. Such domains, so-called aptamers, are folded into intricate structures to enable metabolite recognition. Over the years, the development of ensemble and single-molecule fluorescence techniques has allowed to probe most of the mechanistic aspects of aptamer folding and ligand binding. In this review, we summarize the current fluorescence toolkit available to study riboswitch structural dynamics. We fist describe those methods based on fluorescent nucleotide analogues, mostly 2-aminopurine (2AP), to investigate short-range conformational changes, including some key steady-state and time-resolved examples that exemplify the versatility of fluorescent analogues as structural probes. The study of long-range structural changes by Förster resonance energy transfer (FRET) is mostly discussed in the context of single-molecule studies, including some recent developments based on the combination of single-molecule FRET techniques with controlled chemical denaturation methods. This article is part of a Special Issue entitled: Riboswitches.
Collapse
Affiliation(s)
- Patrick St-Pierre
- RNA Group, Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Kaley McCluskey
- SUPA, School of Physics and Astronomy University of St Andrews, St Andrews, Fife KY16 9SS, United Kingdom
| | - Euan Shaw
- SUPA, School of Physics and Astronomy University of St Andrews, St Andrews, Fife KY16 9SS, United Kingdom
| | - J C Penedo
- SUPA, School of Physics and Astronomy University of St Andrews, St Andrews, Fife KY16 9SS, United Kingdom; Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife KY16 9SS, United Kingdom.
| | - D A Lafontaine
- RNA Group, Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada.
| |
Collapse
|
11
|
Desjardins A, Bouvette J, Legault P. Stepwise assembly of multiple Lin28 proteins on the terminal loop of let-7 miRNA precursors. Nucleic Acids Res 2014; 42:4615-28. [PMID: 24452802 PMCID: PMC3985620 DOI: 10.1093/nar/gkt1391] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lin28 inhibits the biogenesis of let-7 miRNAs through direct interactions with let-7 precursors. Previous studies have described seemingly inconsistent Lin28 binding sites on pre-let-7 RNAs. Here, we reconcile these data by examining the binding mechanism of Lin28 to the terminal loop of pre-let-7g (TL-let-7g) using biochemical and biophysical methods. First, we investigate Lin28 binding to TL-let-7g variants and short RNA fragments and identify three independent binding sites for Lin28 on TL-let-7g. We then determine that Lin28 assembles in a stepwise manner on TL-let-7g to form a stable 1:3 complex. We show that the cold-shock domain (CSD) of Lin28 is responsible for remodelling the terminal loop of TL-let-7g, whereas the NCp7-like domain facilitates the initial binding of Lin28 to TL-let-7g. This stable binding of multiple Lin28 molecules to the terminal loop of pre-let-7g extends to other precursors of the let-7 family, but not to other pre-miRNAs tested. We propose a model for stepwise assembly of the 1:1, 1:2 and 1:3 pre-let-7g/Lin28 complexes. Stepwise multimerization of Lin28 on pre-let-7 is required for maximum inhibition of Dicer cleavage for a least one member of the let-7 family and may be important for orchestrating the activity of the several factors that regulate let-7 biogenesis.
Collapse
Affiliation(s)
- Alexandre Desjardins
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | | | | |
Collapse
|
12
|
Karns K, Vogan JM, Qin Q, Hickey SF, Wilson SC, Hammond MC, Herr AE. Microfluidic screening of electrophoretic mobility shifts elucidates riboswitch binding function. J Am Chem Soc 2013; 135:3136-43. [PMID: 23343213 DOI: 10.1021/ja310742m] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Riboswitches are RNA sensors that change conformation upon binding small molecule metabolites, in turn modulating gene expression. Our understanding of riboswitch regulatory function would be accelerated by a high-throughput, quantitative screening tool capable of measuring riboswitch-ligand binding. We introduce a microfluidic mobility shift assay that enables precise and rapid quantitation of ligand binding and subsequent riboswitch conformational change. In 0.3% of the time required for benchtop assays (3.2 versus 1020 min), we screen and validate five candidate SAM-I riboswitches isolated from thermophilic and cryophilic bacteria. The format offers enhanced resolution of conformational change compared to slab gel formats, quantitation, and repeatability for statistical assessment of small mobility shifts, low reagent consumption, and riboswitch characterization without modification of the aptamer structure. Appreciable analytical sensitivity coupled with high-resolution separation performance allows quantitation of equilibrium dissociation constants (K(d)) for both rapidly and slowly interconverting riboswitch-ligand pairs as validated through experiments and modeling. Conformational change, triplicate mobility shift measurements, and K(d) are reported for both a known and a candidate SAM-I riboswitch with comparison to in-line probing assay results. The microfluidic mobility shift assay establishes a scalable format for the study of riboswitch-ligand binding that will advance the discovery and selection of novel riboswitches and the development of antibiotics to target bacterial riboswitches.
Collapse
Affiliation(s)
- Kelly Karns
- San Francisco Graduate Program in Bioengineering, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Shanahan CA, Gaffney BL, Jones RA, Strobel SA. Differential analogue binding by two classes of c-di-GMP riboswitches. J Am Chem Soc 2011; 133:15578-92. [PMID: 21838307 PMCID: PMC3183120 DOI: 10.1021/ja204650q] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ability of bacteria to adapt to a changing environment is essential for their survival. One mechanism bacteria have evolved to sense environmental cues and translate these signals into phenotypic changes uses the second messenger signaling molecule, cyclic diguanosine monophosphate (c-di-GMP). In addition to several classes of protein receptors, two classes of c-di-GMP-binding riboswitches (class I and class II) have been identified as downstream targets of the second messenger in this signaling pathway. The crystal structures of both riboswitch classes bound to c-di-GMP were previously reported. Here, we further investigate the mechanisms that RNA has evolved for recognition and binding of this second messenger. Using a series of c-di-GMP analogues, we probed the interactions made in the RNA-ligand complex for both classes of riboswitches to identify the most critical elements of c-di-GMP for binding. We found that the structural features of c-di-GMP required for binding differ between these two effectors and that the class II riboswitch is much less discriminatory in ligand binding than the class I riboswitch. These data suggest an explanation for the predicted preferential use of the class I motif over the class II motif in the c-di-GMP signaling pathway.
Collapse
Affiliation(s)
- Carly A Shanahan
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | | | | | | |
Collapse
|
14
|
Soulière MF, Haller A, Rieder R, Micura R. A powerful approach for the selection of 2-aminopurine substitution sites to investigate RNA folding. J Am Chem Soc 2011; 133:16161-7. [PMID: 21882876 DOI: 10.1021/ja2063583] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A precise tertiary structure must be adopted to allow the function of many RNAs in cells. Accordingly, increasing resources have been devoted to the elucidation of RNA structures and the folding of RNAs. 2-Aminopurine (2AP), a fluorescent nucleobase analogue, can be substituted in strategic positions of DNA or RNA molecules to act as site-specific probe to monitor folding and folding dynamics of nucleic acids. Recent studies further demonstrated the potential of 2AP modifications in the assessment of folding kinetics during ligand-induced secondary and tertiary RNA structure rearrangements. However, an efficient way to unambiguously identify reliable positions for 2AP sensors is as yet unavailable and would represent a major asset, especially in the absence of crystallographic or NMR structural data for a target molecule. We report evidence of a novel and direct correlation between the 2'-OH flexibility of nucleotides, observed by selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) probing and the fluorescence response following nucleotide substitutions by 2AP. This correlation leads to a straightforward method, using SHAPE probing with benzoyl cyanide, to select appropriate nucleotide sites for 2AP substitution. This clear correlation is presented for three model RNAs of biological significance: the SAM-II, adenine (addA), and preQ(1) class II (preQ(1)cII) riboswitches.
Collapse
Affiliation(s)
- Marie F Soulière
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 52a, 6020 Innsbruck, Austria
| | | | | | | |
Collapse
|
15
|
Shetty S, Kim S, Shimakami T, Lemon SM, Mihailescu MR. Hepatitis C virus genomic RNA dimerization is mediated via a kissing complex intermediate. RNA (NEW YORK, N.Y.) 2010; 16:913-25. [PMID: 20360391 PMCID: PMC2856886 DOI: 10.1261/rna.1960410] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 02/07/2010] [Indexed: 05/18/2023]
Abstract
With over 200 million people infected with hepatitis C virus (HCV) worldwide, there is a need for more effective and better-tolerated therapeutic strategies. The HCV genome is a positive-sense; single-stranded RNA encoding a large polyprotein cleaved at multiple sites to produce at least ten proteins, among them an error-prone RNA polymerase that confers a high mutation rate. Despite considerable overall sequence diversity, in the 3'-untranslated region of the HCV genomic RNA there is a 98-nucleotide (nt) sequence named X RNA, the first 55 nt of which (X55 RNA) are 100% conserved among all HCV strains. The X55 region has been suggested to be responsible for in vitro dimerization of the genomic RNA in the presence of the viral core protein, although the mechanism by which this occurs is unknown. In this study, we analyzed the X55 region and characterized the mechanism by which it mediates HCV genomic RNA dimerization. Similar to a mechanism proposed previously for the human immunodeficiency 1 virus (HIV-1) genome, we show that dimerization of the HCV genome involves formation of a kissing complex intermediate, which is converted to a more stable extended duplex conformation in the presence of the core protein. Mutations in the dimer linkage sequence loop sequence that prevent RNA dimerization in vitro significantly reduced but did not completely ablate the ability of HCV RNA to replicate or produce infectious virus in transfected cells.
Collapse
Affiliation(s)
- Sumangala Shetty
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | | | | | | | | |
Collapse
|
16
|
Abstract
Bacterial ribosomal RNA is the target of clinically important antibiotics, while biologically important RNAs in viral and eukaryotic genomes present a range of potential drug targets. The physicochemical properties of RNA present difficulties for medicinal chemistry, particularly when oral availability is needed. Peptidic ligands and analysis of their RNA-binding properties are providing insight into RNA recognition. RNA-binding ligands include far more chemical classes than just aminoglycosides. Chemical functionalities from known RNA-binding small molecules are being exploited in fragment- and ligand-based projects. While targeting of RNA for drug design is very challenging, continuing advances in our understanding of the principles of RNA–ligand interaction will be necessary to realize the full potential of this class of targets.
Collapse
|