1
|
Reynders H, Van Zundert I, Silva R, Carlier B, Deschaume O, Bartic C, Rocha S, Basov S, Van Bael MJ, Himmelreich U, Verbiest T, Zamora A. Label-Free Iron Oxide Nanoparticles as Multimodal Contrast Agents in Cells Using Multi-Photon and Magnetic Resonance Imaging. Int J Nanomedicine 2021; 16:8375-8389. [PMID: 35002233 PMCID: PMC8722578 DOI: 10.2147/ijn.s334482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/29/2021] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION The inherent fluorescence properties of iron oxide nanoparticles (IONPs) were characterized, and their applicability for multiphoton imaging in cells was tested in combination with their magnetic resonance imaging (MRI) capabilities. METHODS Superparamagnetic iron oxide nanoparticles were synthesized and subsequently coated with polyethylene glycol to make them water-dispersible. Further characterization of the particles was performed using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), dynamic light scattering (DLS), superconducting quantum interference device (SQUID) and magnetic resonance relaxivity measurements. MRI and fluorescence properties of bare IONPs were first studied in solution and subsequently in A549-labeled cells. RESULTS The particles, with a core size of 11.3 ± 4.5 nm, showed a good negative MRI contrast in tissue-mimicking phantoms. In vitro studies in mammalian A549 cells demonstrate that these IONPs are biocompatible and can also produce significant T2/T2* contrast enhancement in IONPs-labeled cells. Furthermore, excitation-wavelength dependent photoluminescence was observed under one- and two-photon excitation. DISCUSSION The obtained results indicated that IONPs could be used for fluorescence label-free bioimaging at multiple wavelengths, which was proven by multiphoton imaging of IONPs internalization in A549 cancer cells.
Collapse
Affiliation(s)
| | | | - Rui Silva
- Molecular Imaging and Photonics, KU Leuven, Leuven, Belgium
- Engineering Department, Oporto University, Porto, Portugal
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Bram Carlier
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Olivier Deschaume
- Laboratory for Soft Matter and Biophysics, KU Leuven, Leuven, Belgium
| | - Carmen Bartic
- Laboratory for Soft Matter and Biophysics, KU Leuven, Leuven, Belgium
| | - Susana Rocha
- Molecular Imaging and Photonics, KU Leuven, Leuven, Belgium
| | - Sergey Basov
- Quantum Solid State Physics, KU Leuven, Leuven, Belgium
| | | | - Uwe Himmelreich
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | | | - Ana Zamora
- Molecular Imaging and Photonics, KU Leuven, Leuven, Belgium
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Garcia Ribeiro RS, Belderbos S, Danhier P, Gallo J, Manshian BB, Gallez B, Bañobre M, de Cuyper M, Soenen SJ, Gsell W, Himmelreich U. Targeting tumor cells and neovascularization using RGD-functionalized magnetoliposomes. Int J Nanomedicine 2019; 14:5911-5924. [PMID: 31534330 PMCID: PMC6681073 DOI: 10.2147/ijn.s214041] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/29/2019] [Indexed: 12/25/2022] Open
Abstract
Purpose Magnetoliposomes (MLs) have shown great potential as magnetic resonance imaging contrast agents and as delivery vehicles for cancer therapy. Targeting the MLs towards the tumor cells or neovascularization could ensure delivery of drugs at the tumor site. In this study, we evaluated the potential of MLs targeting the αvβ3 integrin overexpressed on tumor neovascularization and different tumor cell types, including glioma and ovarian cancer. Methods MLs functionalized with a Texas Red fluorophore (anionic MLs), and with the fluorophore and the cyclic Arginine-Glycine-Aspartate (cRGD; cRGD-MLs) targeting the αvβ3 integrin, were produced in-house. Swiss nude mice were subcutaneously injected with 107 human ovarian cancer SKOV-3 cells. Tumors were allowed to grow for 3 weeks before injection of anionic or cRGD-MLs. Biodistribution of MLs was followed up with a 7T preclinical magnetic resonance imaging (MRI) scanner and fluorescence imaging (FLI) right after injection, 2h, 4h, 24h and 48h post injection. Ex vivo intratumoral ML uptake was confirmed using FLI, electron paramagnetic resonance spectroscopy (EPR) and histology at different time points post injection. Results In vivo, we visualized a higher uptake of cRGD-MLs in SKOV-3 xenografts compared to control, anionic MLs with both MRI and FLI. Highest ML uptake was seen after 4h using MRI, but only after 24h using FLI indicating the lower sensitivity of this technique. Furthermore, ex vivo EPR and FLI confirmed the highest tumoral ML uptake at 4 h. Last, a Perl’s stain supported the presence of our iron-based particles in SKOV-3 xenografts. Conclusion Uptake of cRGD-MLs can be visualized using both MRI and FLI, even though the latter was less sensitive due to lower depth penetration. Furthermore, our results indicate that cRGD-MLs can be used to target SKOV-3 xenograft in Swiss nude mice. Therefore, the further development of this particles into theranostics would be of interest.
Collapse
Affiliation(s)
- Rita Sofia Garcia Ribeiro
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Biomedical Sciences Group, Leuven B-3000, Belgium
| | - Sarah Belderbos
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Biomedical Sciences Group, Leuven B-3000, Belgium
| | - Pierre Danhier
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique De Louvain, Brussels B-1200, Belgium
| | - Juan Gallo
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique De Louvain, Brussels B-1200, Belgium
| | - Bella B Manshian
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Biomedical Sciences Group, Leuven B-3000, Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique De Louvain, Brussels B-1200, Belgium
| | - Manuel Bañobre
- Diagnostic Tools and Methods/Advanced (Magnetic) Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory (INL), PT-Braga 4715-330, Portugal
| | - Marcel de Cuyper
- Laboratory of Bionanocolloids, Interdisciplinary Research Centre, KULAK/KU Leuven, Kortrijk B-8500, Belgium
| | - Stefaan J Soenen
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Biomedical Sciences Group, Leuven B-3000, Belgium
| | - Willy Gsell
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Biomedical Sciences Group, Leuven B-3000, Belgium
| | - Uwe Himmelreich
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Biomedical Sciences Group, Leuven B-3000, Belgium
| |
Collapse
|
3
|
Garcia Ribeiro RS, Gysemans C, da Cunha JPMCM, Manshian BB, Jirak D, Kriz J, Gallo J, Bañobre-López M, Struys T, De Cuyper M, Mathieu C, Soenen SJ, Gsell W, Himmelreich U. Magnetoliposomes as Contrast Agents for Longitudinal in vivo Assessment of Transplanted Pancreatic Islets in a Diabetic Rat Model. Sci Rep 2018; 8:11487. [PMID: 30065302 PMCID: PMC6068133 DOI: 10.1038/s41598-018-29136-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/12/2018] [Indexed: 01/07/2023] Open
Abstract
Magnetoliposomes (MLs) were synthesized and tested for longitudinal monitoring of transplanted pancreatic islets using magnetic resonance imaging (MRI) in rat models. The rat insulinoma cell line INS-1E and isolated pancreatic islets from outbred and inbred rats were used to optimize labeling conditions in vitro. Strong MRI contrast was generated by islets exposed to 50 µg Fe/ml for 24 hours without any increased cell death, loss of function or other signs of toxicity. In vivo experiments showed that pancreatic islets (50-1000 units) labeled with MLs were detectable for up to 6 weeks post-transplantation in the kidney subcapsular space. Islets were also monitored for two weeks following transplantation through the portal vein of the liver. Hereby, islets labeled with MLs and transplanted under the left kidney capsule were able to correct hyperglycemia and had stable MRI signals until nephrectomy. Interestingly, in vivo MRI of streptozotocin induced diabetic rats transplanted with allogeneic islets demonstrated loss of MRI contrast between 7-16 days, indicative of loss of islet structure. MLs used in this study were not only beneficial for monitoring the location of transplanted islets in vivo with high sensitivity but also reported on islet integrity and hereby indirectly on islet function and rejection.
Collapse
Affiliation(s)
- Rita Sofia Garcia Ribeiro
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Biomedical Sciences Group, KU LEUVEN, Herestraat 49, 3000, Leuven, Belgium
| | - Conny Gysemans
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing, KU LEUVEN, Herestraat 49, 3000, Leuven, Belgium
| | | | - Bella B Manshian
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Biomedical Sciences Group, KU LEUVEN, Herestraat 49, 3000, Leuven, Belgium
| | - Daniel Jirak
- MR Spectroscopy Unit, Institute for Clinical and Experimental Medicine (IKEM), Videnska 1958/9, 140 21, Prague, Czech Republic
- Department of Biophysics, Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Salmovska 1, 120 00, Prague 2, Czech Republic
| | - Jan Kriz
- Diabetes Center, Institute for Clinical and Experimental Medicine (IKEM), Videnska 1958/9, 140 21, Prague, Czech Republic
| | - Juan Gallo
- Diagnostic Tools & Methods/Advanced (magnetic) Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Manuel Bañobre-López
- Diagnostic Tools & Methods/Advanced (magnetic) Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Tom Struys
- Lab of Histology, Biomedical Research Institute, Hasselt University, Campus Diepenbeek, Agoralaan, B3590, Diepenbeek, Belgium
| | - Marcel De Cuyper
- Laboratory of BioNanoColloids, Interdisciplinary Research Centre, KULAK/KU LEUVEN, Etienne Sabbelaan 53, 8500, Kortrijk, Belgium
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing, KU LEUVEN, Herestraat 49, 3000, Leuven, Belgium
| | - Stefaan J Soenen
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Biomedical Sciences Group, KU LEUVEN, Herestraat 49, 3000, Leuven, Belgium
| | - Willy Gsell
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Biomedical Sciences Group, KU LEUVEN, Herestraat 49, 3000, Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Biomedical Sciences Group, KU LEUVEN, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
4
|
Mattingly SJ, O'Toole MG, James KT, Clark GJ, Nantz MH. Magnetic nanoparticle-supported lipid bilayers for drug delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:3326-3332. [PMID: 25714501 DOI: 10.1021/la504830z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Magnetic nanoparticle-supported lipid bilayers (SLBs) constructed around core-shell Fe3O4-SiO2 nanoparticles (SNPs) were prepared and evaluated as potential drug carriers. We describe how an oxime ether lipid can be mixed with SNPs to produce lipid-particle assemblies with highly positive ζ potential. To demonstrate the potential of the resultant cationic SLBs, the particles were loaded with either the anticancer drug doxorubicin or an amphiphilic analogue, prepared to facilitate integration into the supported lipid bilayer, and then examined in studies against MCF-7 breast cancer cells. The assemblies were rapidly internalized and exhibited higher toxicity than treatments with doxorubicin alone. The magnetic SLBs were also shown to increase the efficacy of unmodified doxorubicin.
Collapse
Affiliation(s)
- Stephanie J Mattingly
- †Department of Chemistry, ‡Department of Biomedical Engineering, J.B. Speed School of Engineering, and §School of Medicine, University of Louisville, Louisville, Kentucky 40292, United States
| | - Martin G O'Toole
- †Department of Chemistry, ‡Department of Biomedical Engineering, J.B. Speed School of Engineering, and §School of Medicine, University of Louisville, Louisville, Kentucky 40292, United States
| | - Kurtis T James
- †Department of Chemistry, ‡Department of Biomedical Engineering, J.B. Speed School of Engineering, and §School of Medicine, University of Louisville, Louisville, Kentucky 40292, United States
| | - Geoffrey J Clark
- †Department of Chemistry, ‡Department of Biomedical Engineering, J.B. Speed School of Engineering, and §School of Medicine, University of Louisville, Louisville, Kentucky 40292, United States
| | - Michael H Nantz
- †Department of Chemistry, ‡Department of Biomedical Engineering, J.B. Speed School of Engineering, and §School of Medicine, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
5
|
Soenen SJ, De Cuyper M, De Smedt SC, Braeckmans K. Investigating the toxic effects of iron oxide nanoparticles. Methods Enzymol 2012; 509:195-224. [PMID: 22568907 DOI: 10.1016/b978-0-12-391858-1.00011-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of iron oxide nanoparticles (IONPs) in biomedical research is steadily increasing, leading to the rapid development of novel IONP types and an increased exposure of cultured cells to a wide variety of IONPs. Due to the large variation in incubation conditions, IONP characteristics, and cell types studied, it is still unclear whether IONPs are generally safe or should be used with caution. During the past years, several contradictory observations have been reported, which highlight the great need for a more thorough understanding of cell-IONP interactions. To improve our knowledge in this field, there is a great need for standardized protocols and toxicity assays, that would allow to directly compare the cytotoxic potential of any IONP type with previously screened particles. Here, several approaches are described that allow to rapidly but thoroughly address several parameters which are of great impact for IONP-induced toxicity. These assays focus on acute cytotoxicity, induction of reactive oxygen species, measuring the amount of cell-associated iron, assessing cell morphology, cell proliferation, cell functionality, and possible pH-induced or intracellular IONP degradation. Together, these assays may form the basis for any detailed study on IONP cytotoxicity.
Collapse
Affiliation(s)
- Stefaan J Soenen
- Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | | | | | | |
Collapse
|
6
|
MRI assessment of blood outgrowth endothelial cell homing using cationic magnetoliposomes. Biomaterials 2011; 32:4140-50. [DOI: 10.1016/j.biomaterials.2011.02.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 02/19/2011] [Indexed: 12/31/2022]
|
7
|
Soenen SJ, Velde GV, Ketkar-Atre A, Himmelreich U, De Cuyper M. Magnetoliposomes as magnetic resonance imaging contrast agents. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2011; 3:197-211. [PMID: 25363747 DOI: 10.1002/wnan.122] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Among the wide variety in iron oxide nanoparticles which are routinely used as magnetic resonance imaging (MRI) contrast agents, magnetoliposomes (MLs) take up a special place. In the present work, the two main types (large and small MLs) are defined and their specific features are commented. For both types of MLs, the flexibility of the lipid coating allows for efficient functionalization, enabling bimodal imaging (e.g., MRI and fluorescence) or the use of MLs as theranostics. These features are especially true for large MLs, where several magnetite cores are encapsulated within a single large liposome, which were found to be highly efficient theranostic agents. By carefully fine-tuning the number of magnetite cores and attaching Gd(3+) -complexes onto the liposomal surface, the large MLs can be efficiently optimized for dynamic MRI. A special type of MLs, biogenic MLs, can also be efficiently used in this regard, with potential applications in cancer treatment and imaging. Small MLs, where the lipid bilayer is immediately attached onto a solid magnetite core, give a very high r2 /r1 ratio. The flexibility of the lipid bilayer allows the incorporation of poly(ethylene glycol)-lipid conjugates to increase blood circulation times and be used as bone marrow contrast agents. Cationic lipids can also be incorporated, leading to high cell uptake and associated strong contrast generation in MRI of implanted cells. Unique for these small MLs is the high resistance the particles exhibit against intracellular degradation compared with dextran- or citrate-coated particles. Additionally, intracellular clustering of the iron oxide cores enhances negative contrast generation and enables longer tracking of labeled cells in time.
Collapse
Affiliation(s)
- Stefaan J Soenen
- Lab of BioNanoColloids, KULeuven Campus Kortrijk, IRC Etienne Sabbelaan, Kortrijk, Belgium
| | - Greetje Vande Velde
- Biomedical NMR Unit/MoSAIC, KULeuven Campus Gasthuisberg, University Medical Hospital Gasthuisberg, Leuven, Belgium
| | - Ashwini Ketkar-Atre
- Biomedical NMR Unit/MoSAIC, KULeuven Campus Gasthuisberg, University Medical Hospital Gasthuisberg, Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical NMR Unit/MoSAIC, KULeuven Campus Gasthuisberg, University Medical Hospital Gasthuisberg, Leuven, Belgium
| | - Marcel De Cuyper
- Lab of BioNanoColloids, KULeuven Campus Kortrijk, IRC Etienne Sabbelaan, Kortrijk, Belgium
| |
Collapse
|
8
|
Lesieur S, Gazeau F, Luciani N, Ménager C, Wilhelm C. Multifunctional nanovectors based on magnetic nanoparticles coupled with biological vesicles or synthetic liposomes. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm10487j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Soenen SJ, De Cuyper M. How to assess cytotoxicity of (iron oxide-based) nanoparticles. A technical note using cationic magnetoliposomes. CONTRAST MEDIA & MOLECULAR IMAGING 2010; 6:153-64. [DOI: 10.1002/cmmi.415] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/09/2010] [Accepted: 08/10/2010] [Indexed: 02/02/2023]
|
10
|
Soenen SJH, De Cuyper M. Assessing iron oxide nanoparticle toxicity in vitro: current status and future prospects. Nanomedicine (Lond) 2010; 5:1261-75. [DOI: 10.2217/nnm.10.106] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The in vitro labeling of stem or therapeutic cells with engineered nanoparticles with the aim of transplanting these cells into live animals and, for example, noninvasively monitoring their migration, is a hot topic in nanomedicine research. It is of crucial importance that cell–nanoparticle interactions are studied in depth in order to exclude any negative effects of the cell labeling procedure. To date, many disparate results can be found in the literature regarding nanoparticle toxicity due to the great versatility of different parameters investigated. In the present work, an overview is presented of different types of nanomaterials, focusing mostly on iron oxide nanoparticles, developed for biomedical research. The difficulties in assessing nanoparticle-mediated toxicity are discussed, an overview of some of the problems encountered using commercial (dextran-coated) iron oxide nanoparticles is presented, several key parameters are highlighted and novel methods suggested – emphasizing the importance of intracellular nanoparticle degradation and linking toxicity data to functional (i.e., cell-associated) nanoparticle levels, which could help to advance any progress in this highly important research topic.
Collapse
Affiliation(s)
- Stefaan JH Soenen
- Interdisciplinary Research Centre, Laboratory of BioNanoColloids, K.U. Leuven – Campus Kortrijk, E. Sabbelaan 53, B-8500 Kortrijk, Belgium
- Faculty of Pharmaceutical Sciences, Laboratory of General Biochemistry & Physical Pharmacy, University of Gent, Harelbekestraat 72, B-9000 Gent, Belgium
| | | |
Collapse
|
11
|
Soenen SJH, Himmelreich U, Nuytten N, De Cuyper M. Cytotoxic effects of iron oxide nanoparticles and implications for safety in cell labelling. Biomaterials 2010; 32:195-205. [PMID: 20863560 DOI: 10.1016/j.biomaterials.2010.08.075] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 08/27/2010] [Indexed: 11/29/2022]
Abstract
The in vitro labelling of cultured cells with iron oxide nanoparticles (NPs) is a frequent practice in biomedical research. To date, the potential cytotoxicity of these particles remains an issue of debate. In the present study, 4 different NP types (dextran-coated Endorem, carboxydextran-coated Resovist, lipid-coated magnetoliposomes (MLs) and citrate-coated very small iron oxide particles (VSOP)) are tested on a variety of cell types, being C17.2 neural progenitor cells, PC12 rat pheochromocytoma cells and human blood outgrowth endothelial cells. Using different NP concentrations, the effect of the NPs on cell morphology, cytoskeleton, proliferation, reactive oxygen species, functionality, viability and cellular homeostasis is investigated. Through a systematic study, the safe concentrations for every particle type are determined, showing that MLs can lead up to 67.37 ± 5.98 pg Fe/cell whereas VSOP are the most toxic particles and only reach 18.65 ± 2.07 pg Fe/cell. Using these concentrations, it is shown that for MRI up to 500 cells/μl labelled with VSOP are required to efficiently visualize in an agar phantom in contrast to only 50 cells/μl for MLs and 200 cells/μl for Endorem and Resovist. These results highlight the importance of in-depth cytotoxic evaluation of cell labelling studies as at non-toxic concentrations, some particles appear to be less suitable for the MR visualization of labelled cells.
Collapse
Affiliation(s)
- Stefaan J H Soenen
- Lab of BioNanoColloids, Interdisciplinary Research Centre, Katholieke Universiteit Leuven, Campus Kortrijk, B8500 Kortrijk, Belgium
| | | | | | | |
Collapse
|