1
|
Zhang M, Yang C, Tasan I, Zhao H. Expanding the Potential of Mammalian Genome Engineering via Targeted DNA Integration. ACS Synth Biol 2021; 10:429-446. [PMID: 33596056 DOI: 10.1021/acssynbio.0c00576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Inserting custom designed DNA sequences into the mammalian genome plays an essential role in synthetic biology. In particular, the ability to introduce foreign DNA in a site-specific manner offers numerous advantages over random DNA integration. In this review, we focus on two mechanistically distinct systems that have been widely adopted for targeted DNA insertion in mammalian cells, the CRISPR/Cas9 system and site-specific recombinases. The CRISPR/Cas9 system has revolutionized the genome engineering field thanks to its high programmability and ease of use. However, due to its dependence on linearized DNA donor and endogenous cellular pathways to repair the induced double-strand break, CRISPR/Cas9-mediated DNA insertion still faces limitations such as small insert size, and undesired editing outcomes via error-prone repair pathways. In contrast, site-specific recombinases, in particular the Serine integrases, demonstrate large-cargo capability and no dependence on cellular repair pathways for DNA integration. Here we first describe recent advances in improving the overall efficacy of CRISPR/Cas9-based methods for DNA insertion. Moreover, we highlight the advantages of site-specific recombinases over CRISPR/Cas9 in the context of targeted DNA integration, with a special focus on the recent development of programmable recombinases. We conclude by discussing the importance of protein engineering to further expand the current toolkit for targeted DNA insertion in mammalian cells.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Che Yang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ipek Tasan
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
|
3
|
Tonelli F, Bek JW, Besio R, De Clercq A, Leoni L, Salmon P, Coucke PJ, Willaert A, Forlino A. Zebrafish: A Resourceful Vertebrate Model to Investigate Skeletal Disorders. Front Endocrinol (Lausanne) 2020; 11:489. [PMID: 32849280 PMCID: PMC7416647 DOI: 10.3389/fendo.2020.00489] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
Animal models are essential tools for addressing fundamental scientific questions about skeletal diseases and for the development of new therapeutic approaches. Traditionally, mice have been the most common model organism in biomedical research, but their use is hampered by several limitations including complex generation, demanding investigation of early developmental stages, regulatory restrictions on breeding, and high maintenance cost. The zebrafish has been used as an efficient alternative vertebrate model for the study of human skeletal diseases, thanks to its easy genetic manipulation, high fecundity, external fertilization, transparency of rapidly developing embryos, and low maintenance cost. Furthermore, zebrafish share similar skeletal cells and ossification types with mammals. In the last decades, the use of both forward and new reverse genetics techniques has resulted in the generation of many mutant lines carrying skeletal phenotypes associated with human diseases. In addition, transgenic lines expressing fluorescent proteins under bone cell- or pathway- specific promoters enable in vivo imaging of differentiation and signaling at the cellular level. Despite the small size of the zebrafish, many traditional techniques for skeletal phenotyping, such as x-ray and microCT imaging and histological approaches, can be applied using the appropriate equipment and custom protocols. The ability of adult zebrafish to remodel skeletal tissues can be exploited as a unique tool to investigate bone formation and repair. Finally, the permeability of embryos to chemicals dissolved in water, together with the availability of large numbers of small-sized animals makes zebrafish a perfect model for high-throughput bone anabolic drug screening. This review aims to discuss the techniques that make zebrafish a powerful model to investigate the molecular and physiological basis of skeletal disorders.
Collapse
Affiliation(s)
- Francesca Tonelli
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Jan Willem Bek
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University-University Hospital, Ghent, Belgium
| | - Roberta Besio
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Adelbert De Clercq
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University-University Hospital, Ghent, Belgium
| | - Laura Leoni
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Paul J. Coucke
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University-University Hospital, Ghent, Belgium
| | - Andy Willaert
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University-University Hospital, Ghent, Belgium
| | - Antonella Forlino
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
- *Correspondence: Antonella Forlino
| |
Collapse
|
4
|
Gurumurthy CB, Lloyd KCK. Generating mouse models for biomedical research: technological advances. Dis Model Mech 2019; 12:dmm029462. [PMID: 30626588 PMCID: PMC6361157 DOI: 10.1242/dmm.029462] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Over the past decade, new methods and procedures have been developed to generate genetically engineered mouse models of human disease. This At a Glance article highlights several recent technical advances in mouse genome manipulation that have transformed our ability to manipulate and study gene expression in the mouse. We discuss how conventional gene targeting by homologous recombination in embryonic stem cells has given way to more refined methods that enable allele-specific manipulation in zygotes. We also highlight advances in the use of programmable endonucleases that have greatly increased the feasibility and ease of editing the mouse genome. Together, these and other technologies provide researchers with the molecular tools to functionally annotate the mouse genome with greater fidelity and specificity, as well as to generate new mouse models using faster, simpler and less costly techniques.
Collapse
Affiliation(s)
- Channabasavaiah B Gurumurthy
- Developmental Neuroscience, Munroe Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68106-5915, USA
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, University of Nebraska Medical Center, Omaha, NE 68106-5915, USA
| | - Kevin C Kent Lloyd
- Department of Surgery, School of Medicine, University of California, Davis, CA 95618, USA
- Mouse Biology Program, University of California, Davis, CA 95618, USA
| |
Collapse
|
5
|
Reporter Gene Silencing in Targeted Mouse Mutants Is Associated with Promoter CpG Island Methylation. PLoS One 2015; 10:e0134155. [PMID: 26275310 PMCID: PMC4537176 DOI: 10.1371/journal.pone.0134155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/06/2015] [Indexed: 11/19/2022] Open
Abstract
Targeted mutations in mouse disrupt local chromatin structure and may lead to unanticipated local effects. We evaluated targeted gene promoter silencing in a group of six mutants carrying the tm1a Knockout Mouse Project allele containing both a LacZ reporter gene driven by the native promoter and a neo selection cassette. Messenger RNA levels of the reporter gene and targeted gene were assessed by qRT-PCR, and methylation of the promoter CpG islands and LacZ coding sequence were evaluated by sequencing of bisulfite-treated DNA. Mutants were stratified by LacZ staining into presumed Silenced and Expressed reporter genes. Silenced mutants had reduced relative quantities LacZ mRNA and greater CpG Island methylation compared with the Expressed mutant group. Within the silenced group, LacZ coding sequence methylation was significantly and positively correlated with CpG Island methylation, while promoter CpG methylation was only weakly correlated with LacZ gene mRNA. The results support the conclusion that there is promoter silencing in a subset of mutants carrying the tm1a allele. The features of targeted genes which promote local silencing when targeted remain unknown.
Collapse
|
6
|
Boucher D, Vu T, Bain AL, Tagliaro‐Jahns M, Shi W, Lane SW, Khanna KK. Ssb2/Nabp1
is dispensable for thymic maturation, male fertility, and DNA repair in mice. FASEB J 2015; 29:3326-3334. [DOI: 10.1096/fj.14-269944] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Didier Boucher
- Signal Transduction LaboratoryQIMR Berghofer Medical Research InstituteHerstonQueenslandAustralia
| | - Therese Vu
- Translational Leukaemia ResearchQIMR Berghofer Medical Research InstituteHerstonQueenslandAustralia
- University of QueenslandBrisbaneQueenslandAustralia
| | - Amanda L. Bain
- Signal Transduction LaboratoryQIMR Berghofer Medical Research InstituteHerstonQueenslandAustralia
| | - Marina Tagliaro‐Jahns
- Signal Transduction LaboratoryQIMR Berghofer Medical Research InstituteHerstonQueenslandAustralia
- Institut National De La Recherche AgronomiqueInstitut Jean‐Pierre BourginUnité Mixte de Recherche 1318, Équipes de Recherche Labellisées Centre National de la Recherche Scientifique 3559, Saclay Plant SciencesVersaillesFrance
| | - Wei Shi
- Signal Transduction LaboratoryQIMR Berghofer Medical Research InstituteHerstonQueenslandAustralia
| | - Steven W. Lane
- Translational Leukaemia ResearchQIMR Berghofer Medical Research InstituteHerstonQueenslandAustralia
| | - Kum Kum Khanna
- Signal Transduction LaboratoryQIMR Berghofer Medical Research InstituteHerstonQueenslandAustralia
| |
Collapse
|
7
|
Li KC, Chang YH, Lin CY, Hwang SM, Wang TH, Hu YC. Preclinical Safety Evaluation of ASCs Engineered by FLPo/Frt-Based Hybrid Baculovirus: In Vitro and Large Animal Studies. Tissue Eng Part A 2015; 21:1471-82. [DOI: 10.1089/ten.tea.2014.0465] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Kuei-Chang Li
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Han Chang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Orthopedic, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chin-Yu Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Shiaw-Min Hwang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Tzu-Hao Wang
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
8
|
Abstract
Enterohepatic circulation is responsible for the capture of bile acids and other steroids produced or metabolized in the liver and secreted to the intestine, for reabsorption back into the circulation and transport back to the liver. Bile acids are secreted from the liver in the form of mixed micelles that also contain phosphatidylcholines and cholesterol that facilitate the uptake of fats and vitamins from the diet due to the surfactant properties of bile acids and lipids. Bile acids are synthesized in the liver from cholesterol by a cascade of enzymes that carry out oxidation and conjugation reactions, and transported to the bile duct and gall bladder where they are stored before being released into the intestine. Bile flow from the gall bladder to the small intestine is triggered by food intake in accordance with its role in lipid and vitamin absorption from the diet. Bile acids are further metabolized by gut bacteria and are transported back to the circulation. Metabolites produced in the liver are termed primary bile acids or primary conjugated bile salts, while the metabolites generated by bacterial are called secondary bile acids. About 95% of bile acids are reabsorbed in the proximal and distal ileum into the hepatic portal vein and then into the liver sinusoids, where they are efficiently transported into the liver with little remaining in circulation. Each bile acid is reabsorbed about 20 times on average before being eliminated. Enterohepatic circulation is under tight regulation by nuclear receptor signaling, notably by the farnesoid X receptor (FXR).
Collapse
Affiliation(s)
- Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
9
|
Monetti C, Nishino K, Biechele S, Zhang P, Baba T, Woltjen K, Nagy A. PhiC31 integrase facilitates genetic approaches combining multiple recombinases. Methods 2011; 53:380-5. [DOI: 10.1016/j.ymeth.2010.12.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 12/01/2010] [Accepted: 12/17/2010] [Indexed: 01/04/2023] Open
|
10
|
Urbanski WM, Condie BG. Textpresso site-specific recombinases: A text-mining server for the recombinase literature including Cre mice and conditional alleles. Genesis 2010; 47:842-6. [PMID: 19882667 DOI: 10.1002/dvg.20575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Textpresso Site Specific Recombinases (http://ssrc.genetics.uga.edu/) is a text-mining web server for searching a database of more than 9,000 full-text publications. The papers and abstracts in this database represent a wide range of topics related to site-specific recombinase (SSR) research tools. Included in the database are most of the papers that report the characterization or use of mouse strains that express Cre recombinase as well as papers that describe or analyze mouse lines that carry conditional (floxed) alleles or SSR-activated transgenes/knockins. The database also includes reports describing SSR-based cloning methods such as the Gateway or the Creator systems, papers reporting the development or use of SSR-based tools in systems such as Drosophila, bacteria, parasites, stem cells, yeast, plants, zebrafish, and Xenopus as well as publications that describe the biochemistry, genetics, or molecular structure of the SSRs themselves. Textpresso Site Specific Recombinases is the only comprehensive text-mining resource available for the literature describing the biology and technical applications of SSRs.
Collapse
Affiliation(s)
- William M Urbanski
- Department of Genetics, Developmental Biology Group, University of Georgia, Athens, Georgia, USA
| | | |
Collapse
|
11
|
Patsch C, Peitz M, Otte DM, Kesseler D, Jungverdorben J, Wunderlich FT, Brüstle O, Zimmer A, Edenhofer F. Engineering Cell-Permeant FLP Recombinase for Tightly Controlled Inducible and Reversible Overexpression in Embryonic Stem Cells. Stem Cells 2010; 28:894-902. [DOI: 10.1002/stem.417] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Jackson M, Taylor AH, Jones EA, Forrester LM. The culture of mouse embryonic stem cells and formation of embryoid bodies. Methods Mol Biol 2010; 633:1-18. [PMID: 20204616 DOI: 10.1007/978-1-59745-019-5_1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Embryonic stem (ES) cells are pluripotent cells isolated from the inner cell mass of the pre-implantation blastocyst. They have the capacity to undergo indefinite rounds of self-renewing cell division and differentiate into all the cell lineages of the developing embryo. In suspension culture, ES cells will differentiate into aggregates known as embryoid bodies in a manner similar to the early embryo. This culture system therefore provides a useful model to study the relatively inaccessible stages of mammalian development. We describe methods for the routine maintenance of mouse embryonic stem cells in culture, assays of stem cell self-renewal potential in monolayer culture and the generation of embryoid bodies to study differentiation pathways.
Collapse
Affiliation(s)
- Melany Jackson
- John Hughes Bennett Laboratory, Queen's Medical Research Institute, University of Edinburgh, EH164TJ, Edinburgh, UK
| | | | | | | |
Collapse
|