1
|
Pandey N, Keifenheim D, Yoshida MM, Hassebroek VA, Soroka C, Azuma Y, Clarke DJ. Topoisomerase II SUMOylation activates a metaphase checkpoint via Haspin and Aurora B kinases. J Cell Biol 2020; 219:jcb.201807189. [PMID: 31712254 PMCID: PMC7039214 DOI: 10.1083/jcb.201807189] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 07/17/2019] [Accepted: 10/03/2019] [Indexed: 12/17/2022] Open
Abstract
To prevent chromosome missegregation, a metaphase checkpoint is activated when topoisomerase II is catalytically inhibited and DNA catenations persist. Pandey et al. dissect the key molecular events triggering this regulatory system. Topoisomerase II (Topo II) is essential for mitosis since it resolves sister chromatid catenations. Topo II dysfunction promotes aneuploidy and drives cancer. To protect from aneuploidy, cells possess mechanisms to delay anaphase onset when Topo II is perturbed, providing additional time for decatenation. Molecular insight into this checkpoint is lacking. Here we present evidence that catalytic inhibition of Topo II, which activates the checkpoint, leads to SUMOylation of the Topo II C-terminal domain (CTD). This modification triggers mobilization of Aurora B kinase from inner centromeres to kinetochore proximal centromeres and the core of chromosome arms. Aurora B recruitment accompanies histone H3 threonine-3 phosphorylation and requires Haspin kinase. Strikingly, activation of the checkpoint depends both on Haspin and Aurora B. Moreover, mutation of the conserved CTD SUMOylation sites perturbs Aurora B recruitment and checkpoint activation. The data indicate that SUMOylated Topo II recruits Aurora B to ectopic sites, constituting the molecular trigger of the metaphase checkpoint when Topo II is catalytically inhibited.
Collapse
Affiliation(s)
- Nootan Pandey
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS
| | - Daniel Keifenheim
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN
| | | | | | - Caitlin Soroka
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS
| | - Yoshiaki Azuma
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS
| | - Duncan J Clarke
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN
| |
Collapse
|
2
|
Clarke DJ, Azuma Y. Non-Catalytic Roles of the Topoisomerase IIα C-Terminal Domain. Int J Mol Sci 2017; 18:ijms18112438. [PMID: 29149026 PMCID: PMC5713405 DOI: 10.3390/ijms18112438] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/10/2017] [Accepted: 11/14/2017] [Indexed: 12/26/2022] Open
Abstract
DNA Topoisomerase IIα (Topo IIα) is a ubiquitous enzyme in eukaryotes that performs the strand passage reaction where a double helix of DNA is passed through a second double helix. This unique reaction is critical for numerous cellular processes. However, the enzyme also possesses a C-terminal domain (CTD) that is largely dispensable for the strand passage reaction but is nevertheless important for the fidelity of cell division. Recent studies have expanded our understanding of the roles of the Topo IIα CTD, in particular in mitotic mechanisms where the CTD is modified by Small Ubiquitin-like Modifier (SUMO), which in turn provides binding sites for key regulators of mitosis.
Collapse
Affiliation(s)
- Duncan J Clarke
- Department of Genetics, Cell Biology & Development, University of Minnesota, 420 Washington Ave SE, Minneapolis, MN 55455, USA.
| | - Yoshiaki Azuma
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|
3
|
Guturi KKN, Bohgaki M, Bohgaki T, Srikumar T, Ng D, Kumareswaran R, El Ghamrasni S, Jeon J, Patel P, Eldin MS, Bristow R, Cheung P, Stewart GS, Raught B, Hakem A, Hakem R. RNF168 and USP10 regulate topoisomerase IIα function via opposing effects on its ubiquitylation. Nat Commun 2016; 7:12638. [PMID: 27558965 PMCID: PMC5007378 DOI: 10.1038/ncomms12638] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 07/19/2016] [Indexed: 12/21/2022] Open
Abstract
Topoisomerase IIα (TOP2α) is essential for chromosomal condensation and segregation, as well as genomic integrity. Here we report that RNF168, an E3 ligase mutated in the human RIDDLE syndrome, interacts with TOP2α and mediates its ubiquitylation. RNF168 deficiency impairs decatenation activity of TOP2α and promotes mitotic abnormalities and defective chromosomal segregation. Our data also indicate that RNF168 deficiency, including in human breast cancer cell lines, confers resistance to the anti-cancer drug and TOP2 inhibitor etoposide. We also identify USP10 as a deubiquitylase that negatively regulates TOP2α ubiquitylation and restrains its chromatin association. These findings provide a mechanistic link between the RNF168/USP10 axis and TOP2α ubiquitylation and function, and suggest a role for RNF168 in the response to anti-cancer chemotherapeutics that target TOP2.
Collapse
Affiliation(s)
- Kiran Kumar Naidu Guturi
- Department of Medical Biophysics, Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | - Miyuki Bohgaki
- Department of Medical Biophysics, Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | - Toshiyuki Bohgaki
- Department of Medical Biophysics, Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | - Tharan Srikumar
- Department of Medical Biophysics, Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | - Deborah Ng
- Department of Medical Biophysics, Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | - Ramya Kumareswaran
- Department of Medical Biophysics, Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | - Samah El Ghamrasni
- Department of Medical Biophysics, Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | - Justin Jeon
- Department of Medical Biophysics, Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | - Parasvi Patel
- Department of Medical Biophysics, Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | - Mohamed Saad Eldin
- Department of Medical Biophysics, Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | - Rob Bristow
- Department of Medical Biophysics, Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | - Peter Cheung
- Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3
| | - Grant S Stewart
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Brian Raught
- Department of Medical Biophysics, Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | - Anne Hakem
- Department of Medical Biophysics, Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | - Razqallah Hakem
- Department of Medical Biophysics, Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| |
Collapse
|
4
|
Lane AB, Giménez-Abián JF, Clarke DJ. A novel chromatin tether domain controls topoisomerase IIα dynamics and mitotic chromosome formation. ACTA ACUST UNITED AC 2014; 203:471-86. [PMID: 24217621 PMCID: PMC3824022 DOI: 10.1083/jcb.201303045] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The dynamics of topoisomerase IIα binding to DNA and histones are important for successful mitosis and are regulated by a novel chromatin tether (ChT) domain in topoisomerase IIα. DNA topoisomerase IIα (Topo IIα) is the target of an important class of anticancer drugs, but tumor cells can become resistant by reducing the association of the enzyme with chromosomes. Here we describe a critical mechanism of chromatin recruitment and exchange that relies on a novel chromatin tether (ChT) domain and mediates interaction with histone H3 and DNA. We show that the ChT domain controls the residence time of Topo IIα on chromatin in mitosis and is necessary for the formation of mitotic chromosomes. Our data suggest that the dynamics of Topo IIα on chromosomes are important for successful mitosis and implicate histone tail posttranslational modifications in regulating Topo IIα.
Collapse
Affiliation(s)
- Andrew B Lane
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| | | | | |
Collapse
|