1
|
Toscano E, Cimmino E, Pennacchio FA, Riccio P, Poli A, Liu YJ, Maiuri P, Sepe L, Paolella G. Methods and computational tools to study eukaryotic cell migration in vitro. Front Cell Dev Biol 2024; 12:1385991. [PMID: 38887515 PMCID: PMC11180820 DOI: 10.3389/fcell.2024.1385991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Cellular movement is essential for many vital biological functions where it plays a pivotal role both at the single cell level, such as during division or differentiation, and at the macroscopic level within tissues, where coordinated migration is crucial for proper morphogenesis. It also has an impact on various pathological processes, one for all, cancer spreading. Cell migration is a complex phenomenon and diverse experimental methods have been developed aimed at dissecting and analysing its distinct facets independently. In parallel, corresponding analytical procedures and tools have been devised to gain deep insight and interpret experimental results. Here we review established experimental techniques designed to investigate specific aspects of cell migration and present a broad collection of historical as well as cutting-edge computational tools used in quantitative analysis of cell motion.
Collapse
Affiliation(s)
- Elvira Toscano
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Elena Cimmino
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | - Fabrizio A. Pennacchio
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, Zurich, Switzerland
| | - Patrizia Riccio
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | | | - Yan-Jun Liu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Paolo Maiuri
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | - Leandra Sepe
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | - Giovanni Paolella
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| |
Collapse
|
2
|
Wessels DJ, Pujol C, Pradhan N, Lusche DF, Gonzalez L, Kelly SE, Martin EM, Voss ER, Park YN, Dailey M, Sugg SL, Phadke S, Bashir A, Soll DR. Directed movement toward, translocation along, penetration into and exit from vascular networks by breast cancer cells in 3D. Cell Adh Migr 2021; 15:224-248. [PMID: 34338608 PMCID: PMC8331046 DOI: 10.1080/19336918.2021.1957527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We developed a computer-assisted platform using laser scanning confocal microscopy to 3D reconstruct in real-time interactions between metastatic breast cancer cells and human umbilical vein endothelial cells (HUVECs). We demonstrate that MB-231 cancer cells migrate toward HUVEC networks, facilitated by filopodia, migrate along the network surfaces, penetrate into and migrate within the HUVEC networks, exit and continue migrating along network surfaces. The system is highly amenable to 3D reconstruction and computational analyses, and assessments of the effects of potential anti-metastasis monoclonal antibodies and other drugs. We demonstrate that an anti-RHAMM antibody blocks filopodium formation and all of the behaviors that we found take place between MB-231 cells and HUVEC networks.
Collapse
Affiliation(s)
- Deborah J Wessels
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Claude Pujol
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Nikash Pradhan
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Daniel F Lusche
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Luis Gonzalez
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Sydney E Kelly
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Elizabeth M Martin
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Edward R Voss
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Yang-Nim Park
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Michael Dailey
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Sonia L Sugg
- Department of Surgery, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Sneha Phadke
- Department of Internal Medicine, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Amani Bashir
- Department of Pathology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - David R Soll
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| |
Collapse
|
3
|
Kuhl S, Voss E, Scherer A, Lusche DF, Wessels D, Soll DR. 4D Tumorigenesis Model for Quantitating Coalescence, Directed Cell Motility and Chemotaxis, Identifying Unique Cell Behaviors, and Testing Anticancer Drugs. Methods Mol Biol 2016; 1407:229-50. [PMID: 27271907 DOI: 10.1007/978-1-4939-3480-5_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A 4D high-resolution computer-assisted reconstruction and motion analysis system has been developed and applied to the long-term (14-30 days) analysis of cancer cells migrating and aggregating within a 3D matrix. 4D tumorigenesis models more closely approximate the tumor microenvironment than 2D substrates and, therefore, are improved tools for elucidating the interactions within the tumor microenvironment that promote growth and metastasis. The model we describe here can be used to analyze the growth of tumor cells, aggregate coalescence, directed cell motility and chemotaxis, matrix degradation, the effects of anticancer drugs, and the behavior of immune and endothelial cells mixed with cancer cells. The information given in this chapter is also intended to acquaint the reader with computer-assisted methods and algorithms that can be used for high-resolution 3D reconstruction and quantitative motion analysis.
Collapse
Affiliation(s)
- Spencer Kuhl
- W.M. Keck Dynamic Image Analysis Facility, Department of Biological Sciences, University of Iowa, Iowa City, IA, USA
| | - Edward Voss
- W.M. Keck Dynamic Image Analysis Facility, Department of Biological Sciences, University of Iowa, Iowa City, IA, USA
| | - Amanda Scherer
- W.M. Keck Dynamic Image Analysis Facility, Department of Biological Sciences, University of Iowa, Iowa City, IA, USA
| | - Daniel F Lusche
- W.M. Keck Dynamic Image Analysis Facility, Department of Biological Sciences, University of Iowa, Iowa City, IA, USA
| | - Deborah Wessels
- W.M. Keck Dynamic Image Analysis Facility, Department of Biological Sciences, University of Iowa, Iowa City, IA, USA
| | - David R Soll
- Department of Biology, The University of Iowa, 302 Biology Building East, 210 Iowa Avenue, Iowa City, IA, 52242, USA.
| |
Collapse
|
4
|
Dang Y, Lan X, Zhang Q, Li L, Huang Y. Analysis of grayscale characteristics in images of labeled microtubules from cultured cardiac myocytes. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2015; 21:334-342. [PMID: 25772206 DOI: 10.1017/s1431927615000185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Microtubules of cardiac myocytes depolymerize after a hypoxic insult or treatment with colchicine. However, little attention has been paid to quantifying changes in microtubule distribution when using fluorescent images. We converted fluorescence images of labeled microtubules in H9C2 cardiac myocytes to grayscale images, then filtered the images to remove any noise, and used grayscale histograms to quantify features of the images. The results show that parameters such as the mean, variance, skewness, kurtosis, energy, and entropy can be used to quantitatively describe the distribution of microtubules in cells. Quantitative characteristics of microtubule distribution were similar after culturing cells under hypoxic conditions or after treatment with colchicine. These results parallel those described for neonatal rat cardiac myocytes following ischemia and hypoxia. In addition, we provide a method for internal segmentation of the cells, which revealed that microtubular depolymerization was more evident near the cell membrane following hypoxia or colchicine treatment.
Collapse
Affiliation(s)
- Yongming Dang
- State Key Laboratory of Trauma, Burns and Combined Injury,Institute of Burn Research,Southwest Hospital,The Third Military Medical University,Chongqing 400038,China
| | - Xiaodong Lan
- State Key Laboratory of Trauma, Burns and Combined Injury,Institute of Burn Research,Southwest Hospital,The Third Military Medical University,Chongqing 400038,China
| | - Qiong Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury,Institute of Burn Research,Southwest Hospital,The Third Military Medical University,Chongqing 400038,China
| | - Lingfei Li
- State Key Laboratory of Trauma, Burns and Combined Injury,Institute of Burn Research,Southwest Hospital,The Third Military Medical University,Chongqing 400038,China
| | - Yuesheng Huang
- State Key Laboratory of Trauma, Burns and Combined Injury,Institute of Burn Research,Southwest Hospital,The Third Military Medical University,Chongqing 400038,China
| |
Collapse
|
5
|
Scherer A, Kuhl S, Wessels D, Lusche DF, Hanson B, Ambrose J, Voss E, Fletcher E, Goldman C, Soll DR. A computer-assisted 3D model for analyzing the aggregation of tumorigenic cells reveals specialized behaviors and unique cell types that facilitate aggregate coalescence. PLoS One 2015; 10:e0118628. [PMID: 25790299 PMCID: PMC4366230 DOI: 10.1371/journal.pone.0118628] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 11/28/2014] [Indexed: 01/11/2023] Open
Abstract
We have developed a 4D computer-assisted reconstruction and motion analysis system, J3D-DIAS 4.1, and applied it to the reconstruction and motion analysis of tumorigenic cells in a 3D matrix. The system is unique in that it is fast, high-resolution, acquires optical sections using DIC microscopy (hence there is no associated photoxicity), and is capable of long-term 4D reconstruction. Specifically, a z-series at 5 μm increments can be acquired in less than a minute on tissue samples embedded in a 1.5 mm thick 3D Matrigel matrix. Reconstruction can be repeated at intervals as short as every minute and continued for 30 days or longer. Images are converted to mathematical representations from which quantitative parameters can be derived. Application of this system to cancer cells from established lines and fresh tumor tissue has revealed unique behaviors and cell types not present in non-tumorigenic lines. We report here that cells from tumorigenic lines and tumors undergo rapid coalescence in 3D, mediated by specific cell types that we have named “facilitators” and “probes.” A third cell type, the “dervish”, is capable of rapid movement through the gel and does not adhere to it. These cell types have never before been described. Our data suggest that tumorigenesis in vitro is a developmental process involving coalescence facilitated by specialized cells that culminates in large hollow spheres with complex architecture. The unique effects of select monoclonal antibodies on these processes demonstrate the usefulness of the model for analyzing the mechanisms of anti-cancer drugs.
Collapse
Affiliation(s)
- Amanda Scherer
- Monoclonal Antibody Research Institute, Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, Iowa, 52242, United States of America
| | - Spencer Kuhl
- Monoclonal Antibody Research Institute, Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, Iowa, 52242, United States of America
| | - Deborah Wessels
- Monoclonal Antibody Research Institute, Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, Iowa, 52242, United States of America
| | - Daniel F. Lusche
- Monoclonal Antibody Research Institute, Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, Iowa, 52242, United States of America
| | - Brett Hanson
- Monoclonal Antibody Research Institute, Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, Iowa, 52242, United States of America
| | - Joseph Ambrose
- Monoclonal Antibody Research Institute, Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, Iowa, 52242, United States of America
| | - Edward Voss
- Monoclonal Antibody Research Institute, Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, Iowa, 52242, United States of America
| | - Emily Fletcher
- Mercy Hospital System of Des Moines, Des Moines, Iowa, United States of America
| | - Charles Goldman
- Mercy Hospital System of Des Moines, Des Moines, Iowa, United States of America
| | - David R. Soll
- Monoclonal Antibody Research Institute, Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, Iowa, 52242, United States of America
- * E-mail:
| |
Collapse
|
6
|
Lusche DF, Wessels D, Richardson NA, Russell KB, Hanson BM, Soll BA, Lin BH, Soll DR. PTEN redundancy: overexpressing lpten, a homolog of Dictyostelium discoideum ptenA, the ortholog of human PTEN, rescues all behavioral defects of the mutant ptenA-. PLoS One 2014; 9:e108495. [PMID: 25247494 PMCID: PMC4172592 DOI: 10.1371/journal.pone.0108495] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/22/2014] [Indexed: 11/18/2022] Open
Abstract
Mutations in the tumor suppressor gene PTEN are associated with a significant proportion of human cancers. Because the human genome also contains several homologs of PTEN, we considered the hypothesis that if a homolog, functionally redundant with PTEN, can be overexpressed, it may rescue the defects of a PTEN mutant. We have performed an initial test of this hypothesis in the model system Dictyostelium discoideum, which contains an ortholog of human PTEN, ptenA. Deletion of ptenA results in defects in motility, chemotaxis, aggregation and multicellular morphogenesis. D. discoideum also contains lpten, a newly discovered homolog of ptenA. Overexpressing lpten completely rescues all developmental and behavioral defects of the D. discoideum mutant ptenA−. This hypothesis must now be tested in human cells.
Collapse
Affiliation(s)
- Daniel F. Lusche
- Monoclonal Antibody Research Institute and Developmental Studies Hybridoma Bank, Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Deborah Wessels
- Monoclonal Antibody Research Institute and Developmental Studies Hybridoma Bank, Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Nicole A. Richardson
- Monoclonal Antibody Research Institute and Developmental Studies Hybridoma Bank, Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Kanoe B. Russell
- Monoclonal Antibody Research Institute and Developmental Studies Hybridoma Bank, Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Brett M. Hanson
- Monoclonal Antibody Research Institute and Developmental Studies Hybridoma Bank, Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Benjamin A. Soll
- Monoclonal Antibody Research Institute and Developmental Studies Hybridoma Bank, Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Benjamin H. Lin
- Monoclonal Antibody Research Institute and Developmental Studies Hybridoma Bank, Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - David R. Soll
- Monoclonal Antibody Research Institute and Developmental Studies Hybridoma Bank, Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
7
|
Berthier E, Beebe DJ. Gradient generation platforms: new directions for an established microfluidic technology. LAB ON A CHIP 2014; 14:3241-7. [PMID: 25008971 PMCID: PMC4134926 DOI: 10.1039/c4lc00448e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Microscale platforms are enabling for cell-based studies as they allow the recapitulation of physiological conditions such as extracellular matrix (ECM) configurations and soluble factors interactions. Gradient generation platforms have been one of the few applications of microfluidics that have begun to be translated to biological laboratories and may become a new "gold standard". Though gradient generation platforms are now established, their full potential has not yet been realized. Here, we will provide our perspective on milestones achieved in the development of gradient generation and cell migration platforms, as well as emerging directions such as using cell migration as a diagnostic readout and attaining mechanistic information from cell migration models.
Collapse
Affiliation(s)
- E Berthier
- Microtechnology Medicine and Biology Lab (MMB), Department of Biomedical Engineering, University of Wisconsin-Madison, USA.
| | | |
Collapse
|
8
|
Biggs LC, Naridze RL, DeMali KA, Lusche DF, Kuhl S, Soll DR, Schutte BC, Dunnwald M. Interferon regulatory factor 6 regulates keratinocyte migration. J Cell Sci 2014; 127:2840-8. [PMID: 24777480 DOI: 10.1242/jcs.139246] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Interferon regulatory factor 6 (Irf6) regulates keratinocyte proliferation and differentiation. In this study, we tested the hypothesis that Irf6 regulates cellular migration and adhesion. Irf6-deficient embryos at 10.5 days post-conception failed to close their wound compared with wild-type embryos. In vitro, Irf6-deficient murine embryonic keratinocytes were delayed in closing a scratch wound. Live imaging of the scratch showed deficient directional migration and reduced speed in cells lacking Irf6. To understand the underlying molecular mechanisms, cell-cell and cell-matrix adhesions were investigated. We show that wild-type and Irf6-deficient keratinocytes adhere similarly to all matrices after 60 min. However, Irf6-deficient keratinocytes were consistently larger and more spread, a phenotype that persisted during the scratch-healing process. Interestingly, Irf6-deficient keratinocytes exhibited an increased network of stress fibers and active RhoA compared with that observed in wild-type keratinocytes. Blocking ROCK, a downstream effector of RhoA, rescued the delay in closing scratch wounds. The expression of Arhgap29, a Rho GTPase-activating protein, was reduced in Irf6-deficient keratinocytes. Taken together, these data suggest that Irf6 functions through the RhoA pathway to regulate cellular migration.
Collapse
Affiliation(s)
- Leah C Biggs
- Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, IA 52242, USA
| | - Rachelle L Naridze
- Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
| | - Kris A DeMali
- Department of Biochemistry, The University of Iowa, Iowa City, IA 52242, USA
| | - Daniel F Lusche
- Developmental Studies Hybridoma Bank, Department of Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Spencer Kuhl
- Developmental Studies Hybridoma Bank, Department of Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - David R Soll
- Developmental Studies Hybridoma Bank, Department of Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Brian C Schutte
- Departments of Microbiology and Molecular Genetics and of Pediatrics and Human Development, Michigan State University, East Lansing, MI 48824, USA
| | - Martine Dunnwald
- Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
9
|
Ashby WJ, Zijlstra A. Established and novel methods of interrogating two-dimensional cell migration. Integr Biol (Camb) 2013; 4:1338-50. [PMID: 23038152 DOI: 10.1039/c2ib20154b] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The regulation of cell motility is central to living systems. Consequently, cell migration assays are some of the most frequently used in vitro assays. This article provides a comprehensive, detailed review of in vitro cell migration assays both currently in use and possible with existing technology. Emphasis is given to two-dimensional migration assays using densely organized cells such as the scratch assay. Assays are compared and categorized in an outline format according to their primary biological readout and physical parameters. The individual benefits of the various methods and quantification strategies are also discussed. This review provides an in-depth, structured overview of in vitro cell migration assays as a means of enabling the reader to make informed decisions among the growing number of options available for their specific cell migration application.
Collapse
Affiliation(s)
- William J Ashby
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | |
Collapse
|
10
|
Wessels D, Kuhl S, Soll DR. Quantitative Analysis of Basic Motile Behavior in Amoeboid Cells. Methods Cell Biol 2012. [DOI: 10.1016/b978-0-12-405914-6.00022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|