1
|
Pelka S, Guha C. Enhancing Immunogenicity in Metastatic Melanoma: Adjuvant Therapies to Promote the Anti-Tumor Immune Response. Biomedicines 2023; 11:2245. [PMID: 37626741 PMCID: PMC10452223 DOI: 10.3390/biomedicines11082245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Advanced melanoma is an aggressive form of skin cancer characterized by low survival rates. Less than 50% of advanced melanoma patients respond to current therapies, and of those patients that do respond, many present with tumor recurrence due to resistance. The immunosuppressive tumor-immune microenvironment (TIME) remains a major obstacle in melanoma therapy. Adjuvant treatment modalities that enhance anti-tumor immune cell function are associated with improved patient response. One potential mechanism to stimulate the anti-tumor immune response is by inducing immunogenic cell death (ICD) in tumors. ICD leads to the release of damage-associated molecular patterns within the TIME, subsequently promoting antigen presentation and anti-tumor immunity. This review summarizes relevant concepts and mechanisms underlying ICD and introduces the potential of non-ablative low-intensity focused ultrasound (LOFU) as an immune-priming therapy that can be combined with ICD-inducing focal ablative therapies to promote an anti-melanoma immune response.
Collapse
Affiliation(s)
- Sandra Pelka
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Urology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute of Onco-Physics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
2
|
Richard SA. Exploring the Pivotal Immunomodulatory and Anti-Inflammatory Potentials of Glycyrrhizic and Glycyrrhetinic Acids. Mediators Inflamm 2021; 2021:6699560. [PMID: 33505216 PMCID: PMC7808814 DOI: 10.1155/2021/6699560] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/09/2020] [Accepted: 12/19/2020] [Indexed: 12/11/2022] Open
Abstract
Licorice extract is a Chinese herbal medication most often used as a demulcent or elixir. The extract usually consists of many components but the key ingredients are glycyrrhizic (GL) and glycyrrhetinic acid (GA). GL and GA function as potent antioxidants, anti-inflammatory, antiviral, antitumor agents, and immuneregulators. GL and GA have potent activities against hepatitis A, B, and C viruses, human immunodeficiency virus type 1, vesicular stomatitis virus, herpes simplex virus, influenza A, severe acute respiratory syndrome-related coronavirus, respiratory syncytial virus, vaccinia virus, and arboviruses. Also, GA was observed to be of therapeutic valve in human enterovirus 71, which was recognized as the utmost regular virus responsible for hand, foot, and mouth disease. The anti-inflammatory mechanism of GL and GA is realized via cytokines like interferon-γ, tumor necrotizing factor-α, interleukin- (IL-) 1β, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, and IL-17. They also modulate anti-inflammatory mechanisms like intercellular cell adhesion molecule 1 and P-selectin, enzymes like inducible nitric oxide synthase (iNOS), and transcription factors such as nuclear factor-kappa B, signal transducer and activator of transcription- (STAT-) 3, and STAT-6. Furthermore, DCs treated with GL were capable of influencing T-cell differentiation toward Th1 subset. Moreover, GA is capable of blocking prostaglandin-E2 synthesis via blockade of cyclooxygenase- (COX-) 2 resulting in concurrent augmentation nitric oxide production through the enhancement of iNOS2 mRNA secretion in Leishmania-infected macrophages. GA is capable of inhibiting toll-like receptors as well as high-mobility group box 1.
Collapse
Affiliation(s)
- Seidu A. Richard
- Department of Medicine, Princefield University, P. O. Box MA 128, Ho, Ghana
| |
Collapse
|
3
|
Engineering anti-cancer nanovaccine based on antigen cross-presentation. Biosci Rep 2020; 39:220729. [PMID: 31652460 PMCID: PMC6822533 DOI: 10.1042/bsr20193220] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 01/16/2023] Open
Abstract
Dendritic cells (DCs) present exogenous antigens on major histocompatibility complex (MHC) class I molecules, thereby activating CD8+ T cells, contributing to tumor elimination through a mechanism known as antigen cross-presentation. A variety of factors such as maturation state of DCs, co-stimulatory signals, T-cell microenvironment, antigen internalization routes and adjuvants regulate the process of DC-mediated antigen cross-presentation. Recently, the development of successful cancer immunotherapies may be attributed to the ability of DCs to cross-present tumor antigens. In this review article, we focus on the underlying mechanism of antigen cross-presentation and ways to improve antigen cross-presentation in different DC subsets. We have critically summarized the recent developments in the generation of novel nanovaccines for robust CD8+ T-cell response in cancer. In this context, we have reviewed nanocarriers that have been used for cancer immunotherapeutics based on antigen cross-presentation mechanism. Additionally, we have also expressed our views on the future applications of this mechanism in curing cancer.
Collapse
|
4
|
Joshi N, Pohlmeier L, Ben-Yehuda Greenwald M, Haertel E, Hiebert P, Kopf M, Werner S. Comprehensive characterization of myeloid cells during wound healing in healthy and healing-impaired diabetic mice. Eur J Immunol 2020; 50:1335-1349. [PMID: 32306381 PMCID: PMC7496577 DOI: 10.1002/eji.201948438] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/18/2020] [Accepted: 04/16/2020] [Indexed: 01/13/2023]
Abstract
Wound healing involves the concerted action of various lymphoid and in particular myeloid cell populations. To characterize and quantitate different types of myeloid cells and to obtain information on their kinetics during wound healing, we performed multiparametric flow cytometry analysis. In healthy mice, neutrophil numbers increased early after injury and returned to near basal levels after completion of healing. Macrophages, monocyte‐derived dendritic cells (DCs), and eosinophils were abundant throughout the healing phase, in particular in early wounds, and Langerhans cells increased after wounding and remained elevated after epithelial closure. Major differences in healing‐impaired diabetic mice were a much higher percentage of immune cells in late wounds, mainly as a result of neutrophil, macrophage, and monocyte persistence; reduced numbers and percentages of macrophages and monocyte‐derived DCs in early wounds; and of Langerhans cells, conventional DCs, and eosinophils throughout the healing process. Finally, unbiased cluster analysis (PhenoGraph) identified a large number of different clusters of myeloid cells in skin wounds. These results provide insight into myeloid cell diversity and dynamics during wound repair and highlight the abnormal inflammatory response associated with impaired healing.
Collapse
Affiliation(s)
- Natasha Joshi
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Lea Pohlmeier
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | | | - Eric Haertel
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Paul Hiebert
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Manfred Kopf
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Manthey H, Zernecke A. Dendritic cells in atherosclerosis: Functions in immune regulation and beyond. Thromb Haemost 2017; 106:772-8. [DOI: 10.1160/th11-05-0296] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 08/02/2011] [Indexed: 12/15/2022]
Abstract
SummaryChronic inflammation drives the development of atherosclerosis. Dendritic cells (DCs) are known as central mediators of adaptive immune responses and the development of immunological memory and tolerance. DCs are present in non-diseased arteries, and accumulate within atherosclerotic lesions where they can be localised in close vicinity to T cells. Recent work has revealed important functions of DCs in regulating immune mechanisms in atherogenesis, and vaccination strategies using DCs have been explored for treatment of disease. However, in line with a phenotypical and functional overlap with plaque macrophages vascular DCs were also identified to engulf lipids, thus contributing to lipid burden in the vessel wall and initiation of lesion growth. Furthermore, a function of DCs in regulating cholesterol homeostasis has been revealed. Finally, phenotypically distinct plasmacytoid dendritic cells (pDCs) have been identified within atherosclerotic lesions. This review will dissect the multifaceted contribution of DCs and pDCs to the initiation and progression of atherosclerosis and the experimental approaches utilising DCs in therapeutic vaccination strategies.
Collapse
|
6
|
Low-frequency ultrasound-induced VEGF suppression and synergy with dendritic cell-mediated anti-tumor immunity in murine prostate cancer cells in vitro. Sci Rep 2017; 7:5778. [PMID: 28720900 PMCID: PMC5515892 DOI: 10.1038/s41598-017-06242-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 06/12/2017] [Indexed: 01/07/2023] Open
Abstract
High tumor vascular endothelial growth factor (VEGF) levels are associated with poor treatment outcomes in prostate cancer (PCa), and immune deficiency in the PCa microenvironment, especially suppression of dendritic cell (DC) proliferation, has been confirmed. In this study, we (1) investigated whether VEGF participates in DC suppression in murine PCa cells (RM-1), (2) down-regulated VEGF expression using low-frequency ultrasound and microbubbles (UM), and (3) further explored any synergistic effect on immunological activation. DCs from the bone marrow of BALB/c mice were stimulated by the addition of cytokines (granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4)), and we analyzed their proliferation status via flow cytometric recognition of the surface antigen markers CD11c and CD83. The results demonstrated that co-culture with RM-1 cells markedly inhibited expression of the general marker CD11c and the mature marker CD83; UM weakened this inhibition by down-regulating VEGF expression. T lymphocytes were extracted from murine spleens, and CD4 and CD8a were identified as the biomarkers of activated cells participating in the anti-tumor immune response. When DCs, T lymphocytes and RM-1 cells were co-cultured, cell migration and invasion assays and cytoactive detection showed that UM could not only directly suppress PCa cell evolution but also promote activation of anti-tumor immunocytes in the VEGF-inhibited microenvironment.
Collapse
|
7
|
Dendritic Cells in Systemic Lupus Erythematosus: From Pathogenic Players to Therapeutic Tools. Mediators Inflamm 2016; 2016:5045248. [PMID: 27122656 PMCID: PMC4829720 DOI: 10.1155/2016/5045248] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 03/13/2016] [Indexed: 12/20/2022] Open
Abstract
System lupus erythematosus (SLE) is a multifactorial systemic autoimmune disease with a wide variety of presenting features. SLE is believed to result from dysregulated immune responses, loss of tolerance of CD4 T cells and B cells to ubiquitous self-antigens, and the subsequent production of anti-nuclear and other autoreactive antibodies. Recent research has associated lupus development with changes in the dendritic cell (DC) compartment, including altered DC subset frequency and localization, overactivation of mDCs and pDCs, and functional defects in DCs. Here we discuss the current knowledge on the role of DC dysfunction in SLE pathogenesis, with the focus on DCs as targets for interventional therapies.
Collapse
|
8
|
Chistiakov DA, Orekhov AN, Sobenin IA, Bobryshev YV. Plasmacytoid dendritic cells: development, functions, and role in atherosclerotic inflammation. Front Physiol 2014; 5:279. [PMID: 25120492 PMCID: PMC4110479 DOI: 10.3389/fphys.2014.00279] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 07/08/2014] [Indexed: 12/21/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are a specialized subset of DCs that links innate and adaptive immunity. They sense viral and bacterial pathogens and release high levels of Type I interferons (IFN-I) in response to infection. pDCs were shown to contribute to inflammatory responses in the steady state and in pathology. In atherosclerosis, pDCs are involved in priming vascular inflammation and atherogenesis through production of IFN-I and chemokines that attract inflammatory cells to inflamed sites. pDCs also contribute to the proinflammatory activation of effector T cells, cytotoxic T cells, and conventional DCs. However, tolerogenic populations of pDCs are found that suppress atherosclerosis-associated inflammation through down-regulation of function and proliferation of proinflammatory T cell subsets and induction of regulatory T cells with potent immunomodulatory properties. Notably, atheroprotective tolerogenic DCs could be induced by certain self-antigens or bacterial antigens that suggests for great therapeutic potential of these DCs for development of DC-based anti-atherogenic vaccines.
Collapse
Affiliation(s)
- Dimitry A. Chistiakov
- Department of Medical Nanobiotechnology, Pirogov Russian State Medical UniversityMoscow, Russia
| | - Alexander N. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical SciencesMoscow, Russia
- Institute for Atherosclerosis Research, Skolkovo Innovative CenterMoscow, Russia
| | - Igor A. Sobenin
- Institute for Atherosclerosis Research, Skolkovo Innovative CenterMoscow, Russia
- Laboratory of Medical Genetics, Russian Cardiology Research and Production ComplexMoscow, Russia
| | - Yuri V. Bobryshev
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical SciencesMoscow, Russia
- Faculty of Medicine, University of New South WalesSydney, NSW, Australia
- School of Medicine, University of Western SydneyCampbelltown, NSW, Australia
| |
Collapse
|
9
|
Zernecke A. Distinct functions of specialized dendritic cell subsets in atherosclerosis and the road ahead. SCIENTIFICA 2014; 2014:952625. [PMID: 24818041 PMCID: PMC4003768 DOI: 10.1155/2014/952625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 03/20/2014] [Indexed: 06/03/2023]
Abstract
Atherosclerotic vascular disease is modulated by immune mechanisms. Dendritic cells (DCs) and T cells are present within atherosclerotic lesions and function as central players in the initiation and modulation of adaptive immune responses. In previous years, we have studied the functional contribution of distinct DC subsets in disease development, namely, that of CCL17-expressing DCs as well as that of plasmacytoid DCs that play specialized roles in disease development. This review focuses on important findings gathered in these studies and dissects the multifaceted contribution of CCL17-expressing DCs and pDCs to the pathogenesis of atherosclerosis. Furthermore, an outlook on future challenges faced when studying DCs in this detrimental disease are provided, and hurdles that will need to be overcome in order to enable a better understanding of the contribution of DCs to atherogenesis are discussed, a prerequisite for their therapeutic targeting in atherosclerosis.
Collapse
Affiliation(s)
- Alma Zernecke
- Institute of Clinical Biochemistry and Pathobiochemistry, University Hospital Würzburg, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| |
Collapse
|
10
|
Effect of bone marrow-derived CD11b(+)F4/80 (+) immature dendritic cells on the balance between pro-inflammatory and anti-inflammatory cytokines in DBA/1 mice with collagen-induced arthritis. Inflamm Res 2014; 63:357-67. [PMID: 24458308 DOI: 10.1007/s00011-014-0707-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/28/2013] [Accepted: 01/05/2014] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE To explore the effect of bone marrow-derived CD11b(+)F4/80(+) immature dendritic cells (BM CD11b(+)F4/80(+)iDC) on the balance between pro-inflammatory and anti-inflammatory cytokines in DBA/1 mice with collagen-induced arthritis (CIA). METHODS BM CD11b(+)F4/80(+)iDC were induced with rmGM-CSF and rmIL-4, and were identified by the expressions of toll-like receptor 2 (TLR-2), indoleamine 2,3-deoxygenase (IDO), interleukin (IL)-10, transforming growth factor (TGF)-β1 and mixed leukocyte reaction (MLR). CIA was established in DBA/1 mice by immunization with type II collagen. CIA mice were injected intravenously with BM CD11b(+)F4/80(+)iDC three times after immunization. The effect of BM CD11b(+)F4/80(+)iDC on CIA was evaluated by the arthritis index, joint histopathology, body weight, thymus index, thymocytes proliferation, IL-1β, tumor necrosis factor (TNF)-α, IL-17, IL-10 and TGF-β1 levels. RESULTS BM CD11b(+)F4/80(+)iDC induced with rmGM-CSF and rmIL-4 expressed high levels of TLR-2, IDO, IL-10 and TGF-β1. Infusion of BM CD11b(+)F4/80(+)iDC in CIA mice significantly reduced the arthritis index and pathological scores of joints, recovered the weight, decreased the thymus index and inhibited thymocyte proliferation. Levels of IL-1β, TNF-α and IL-17 were decreased in BM CD11b(+)F4/80(+)iDC-treated mice. CONCLUSIONS BM CD11b(+)F4/80(+)iDC can be induced successfully with rmGM-CSF and rmIL-4. BM CD11b(+)F4/80(+)iDC treatment can ameliorate the development and severity of CIA by regulating the balance between pro-inflammatory cytokines and anti-inflammatory cytokines.
Collapse
|
11
|
Bordbar N, Karimi MH, Amirghofran Z. The effect of glycyrrhizin on maturation and T cell stimulating activity of dendritic cells. Cell Immunol 2012; 280:44-9. [PMID: 23261828 DOI: 10.1016/j.cellimm.2012.11.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 10/30/2012] [Accepted: 11/09/2012] [Indexed: 02/02/2023]
Abstract
Glycyrrhizin (GL), a main component of the plant Glycyrrhiza glabra has shown various immunomodulatory activities that can interfere with immune responses by targeting the dendritic cells (DCs). In this study, the effects of GL on the maturation and function of mouse splenic DCs was investigated. The results of flow cytometry analysis showed that GL was able to up-regulate the expression of CD40, CD86 and MHC-ІІ maturation markers on DCs. This component increased the production of IL-12 by these cells. The capacity of treated DCs to stimulate allogenic T cells and secretion of cytokines was examined in mixed lymphocyte reaction. DCs treated with GL enhanced proliferation of allogenic T cells along with the production of IFN-γ and IL-10 cytokines and reduced IL-4 production. These data indicated that GL has the capacity to up-regulate allostimulatory activity of professional antigen presenting DCs and conduct immune responses toward a T helper 1 response.
Collapse
Affiliation(s)
- Narges Bordbar
- Department of Immunology, Shiraz University of Medical Science, Shiraz, Iran
| | | | | |
Collapse
|
12
|
Campisano S, Mac Keon S, Gazzaniga S, Ruiz MS, Traian MD, Mordoh J, Wainstok R. Anti-melanoma vaccinal capacity of CD11c-positive and -negative cell populations present in GM-CSF cultures derived from murine bone marrow precursors. Vaccine 2012; 31:354-61. [PMID: 23146677 DOI: 10.1016/j.vaccine.2012.10.114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 10/25/2012] [Accepted: 10/31/2012] [Indexed: 01/09/2023]
Abstract
We have initially shown that DC/ApoNec vaccine can induce protection against the poorly immunogenic B16F1 melanoma in mice. The population of DC obtained for vaccination after 7days culture with murine GM-CSF is heterogeneous and presents about 60% of CD11c+ DC. Therefore, our purpose was to identify the phenotype of the cells obtained after differentiation and its immunogenicity once injected. DC were separated with anti-CD11c microbeads and the two populations identified in terms of CD11c positivity (DC+ and DC-) were also studied. Approximately 26.6% of the cells in DC+ fraction co-expressed CD11c+ and F4/80 markers and 75.4% were double positive for CD11c and CD11b markers. DC+ fraction also expressed Ly6G. DC- fraction was richer in CD11c-/F4/80+ macrophages (44.7%), some of which co-expressed Ly6G (41.8%), and F4/80-/Ly6-G+ neutrophils (34.6%). Both DC+ and DC- fractions displayed similar capacity to phagocyte and endocyte antigens and even expressed levels of MHC Class II and CD80, CD83 and CD86 costimulatory molecules similar to those in the DC fraction. However, only DC/ApoNec vaccine was capable to induce protection in mice (p<0.01). After 24h co-culture, no detectable level of IL-12 was recorded in DC/ApoNec vaccine, either in supernatant or intracellularly. Therefore, the protection obtained with DC/ApoNec vaccine seemed to be independent of the vaccine's ability to secrete this inflammatory cytokine at the time of injection. In conclusion, we demonstrated that all cell types derived from the culture of mouse bone marrow with GM-CSF are necessary to induce antitumor protection in vivo.
Collapse
Affiliation(s)
- Sabrina Campisano
- Depto. de Química Biológica, Ciudad Universitaria, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
13
|
Amirghofran Z, Ahmadi H, Karimi MH. IMMUNOMODULATORY ACTIVITY OF THE WATER EXTRACT OFThymus vulgaris, Thymus daenensis, ANDZataria multifloraON DENDRITIC CELLS AND T CELLS RESPONSES. J Immunoassay Immunochem 2012; 33:388-402. [DOI: 10.1080/15321819.2012.655822] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
14
|
Döring Y, Zernecke A. Plasmacytoid dendritic cells in atherosclerosis. Front Physiol 2012; 3:230. [PMID: 22754539 PMCID: PMC3385355 DOI: 10.3389/fphys.2012.00230] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 06/07/2012] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis, a chronic inflammatory disease of the vessel wall and the underlying cause of cardiovascular disease, is initiated and maintained by innate and adaptive immunity. Accumulating evidence suggests an important contribution of autoimmune responses to this disease. Plasmacytoid dendritic cells (pDCs), a specialized cell type known to produce large amounts of type I interferons (IFNs) in response to bacterial and viral infections, have recently been revealed to play important roles in atherosclerosis. For example, the development of autoimmune complexes consisting of self-DNA and antimicrobial peptides, which trigger chronic type I IFN production by pDCs, promote early atherosclerotic lesion formation. pDCs and pDC-derived type I IFNs can also induce the maturation of conventional DCs and macrophages, and the development of autoreactive B cells and antibody production. These mechanisms, known to play a role in the pathogenesis of other autoimmune diseases such as systemic lupus erythematosus and psoriasis, may also affect the development and progression of atherosclerotic lesion formation. This review discusses emerging evidence showing a contribution of pDCs in the onset and progression of atherosclerosis.
Collapse
Affiliation(s)
- Yvonne Döring
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich Munich, Germany
| | | |
Collapse
|
15
|
Busch M, Zernecke A. microRNAs in the regulation of dendritic cell functions in inflammation and atherosclerosis. J Mol Med (Berl) 2012; 90:877-85. [PMID: 22307520 DOI: 10.1007/s00109-012-0864-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 01/14/2012] [Accepted: 01/16/2012] [Indexed: 12/18/2022]
Abstract
Atherosclerosis has been established as a chronic inflammatory disease of the vessel wall. Among the mononuclear cell types recruited to the lesions, specialized dendritic cells (DCs) have gained increasing attention, and their secretory products and interactions shape the progression of atherosclerotic plaques. The regulation of DC functions by microRNAs (miRNAs) may thus be of primary importance in disease. We here systematically summarize the biogenesis and functions of miRNAs and provide an overview of miRNAs in DCs, their targets, and potential implications for atherosclerosis, with a particular focus on the best characterized miRNAs in DCs, namely, miR-155 and miR-146. MiRNA functions in DCs range from regulation of lipid uptake to cytokine production and T cell responses with a complex picture emerging, in which miRNAs cooperate or antagonize DC behavior, thereby promoting or counterbalancing inflammatory responses. As miRNAs regulate key functions of DCs known to control atherosclerotic vascular disease, their potential as a therapeutic target holds promise and should be attended to in future research.
Collapse
Affiliation(s)
- Martin Busch
- Rudolf-Virchow-Center/DFG Research Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider Str. 2, Haus D15, 97080 Würzburg, Germany
| | | |
Collapse
|
16
|
Miloud T, Fiegler N, Suffner J, Hämmerling GJ, Garbi N. Organ-specific cellular requirements for in vivo dendritic cell generation. THE JOURNAL OF IMMUNOLOGY 2011; 188:1125-35. [PMID: 22198954 DOI: 10.4049/jimmunol.1003920] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bone marrow-derived dendritic cell (DC) precursors seed peripheral organs, where they encounter diverse cellular environments during their final differentiation into DCs. Flt3 ligand (Flt3-L) is critical for instructing DC generation throughout different organs. However, it remains unknown which cells produce Flt3-L and, importantly, which cellular source drives DC development in such a variety of organs. Using a novel BAC transgenic Flt3-L reporter mouse strain coexpressing enhanced GFP and luciferase, we show ubiquitous Flt3-L expression in organs and cell types. These results were further confirmed at the protein level. Although Flt3-L was produced by immune and nonimmune cells, the source required for development of the DC compartment clearly differed among organs. In lymphoid organs such as the spleen and bone marrow, Flt3-L production by hemopoietic cells was critical for generation of normal DC numbers. This was unexpected for the spleen because both immune and nonimmune cells equally contributed to the Flt3-L content in that organ. Thus, localized production rather than the total tissue content of Flt3-L in spleen dictated normal splenic DC development. No differences were observed in the number of DC precursors, suggesting that the immune source of Flt3-L promoted pre-cDC differentiation in spleen. In contrast, DC generation in the lung, kidney, and pancreas was mostly driven by nonhematopoietic cells producing Flt3-L, with little contribution by immune cells. These findings demonstrate a high degree of flexibility in Flt3-L-dependent DC generation to adapt this process to organ-specific cellular environments encountered by DC precursors during their final differentiation.
Collapse
Affiliation(s)
- Tewfik Miloud
- Division of Molecular Immunology, German Cancer Research Center, Heidelberg 60120, Germany
| | | | | | | | | |
Collapse
|
17
|
Da Silva N, Cortez-Retamozo V, Reinecker HC, Wildgruber M, Hill E, Brown D, Swirski FK, Pittet MJ, Breton S. A dense network of dendritic cells populates the murine epididymis. Reproduction 2011; 141:653-63. [PMID: 21310816 DOI: 10.1530/rep-10-0493] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
One of the most intriguing aspects of male reproductive physiology is the ability to generate spermatogenic cells - which are 'foreign' to the host - without triggering immune activation. After leaving the testis, spermatozoa enter the epididymis where they mature and are stored. In this study, we report a previously unrecognized dense network of dendritic cells (DCs) located at the base of the epididymal epithelium. This network was detected in transgenic mice expressing CD11c-EYFP and CX3CR1-GFP reporters. Epididymal DCs (eDCs) establish intimate interactions with the epithelium and project long dendrites between epithelial cells toward the lumen. We show that isolated eDCs express numerous leukocyte markers described previously in other organs that are in contact with the external environment, and present and cross-present ovalbumin to T cells in vitro. eDCs are, therefore, strategically positioned to regulate the complex interplay between immune tolerance and activation, a balance that is fundamental to male fertility.
Collapse
Affiliation(s)
- Nicolas Da Silva
- Program in Membrane Biology and Division of Nephrology, Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, CPZN 8.206, Boston, Massachusetts 02114-2790, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhang Y, Zhang C. Role of dendritic cells in cardiovascular diseases. World J Cardiol 2010; 2:357-64. [PMID: 21179302 PMCID: PMC3006471 DOI: 10.4330/wjc.v2.i11.357] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 10/24/2010] [Accepted: 10/31/2010] [Indexed: 02/06/2023] Open
Abstract
Dendritic cells (DCs) are potent antigen-presenting cells that bridge innate and adaptive immune responses. Recent work has elucidated the DC life cycle, including several important stages such as maturation, migration and homeostasis, as well as DC classification and subsets/locations, which provided etiological insights on the role of DCs in disease processes. DCs have a close relationship to endothelial cells and they interact with each other to maintain immunity. DCs are deposited in the atherosclerotic plaque and contribute to the pathogenesis of atherosclerosis. In addition, the necrotic cardiac cells induced by ischemia activate DCs by Toll-like receptors, which initiate innate and adaptive immune responses to renal, hepatic and cardiac ischemia reperfusion injury (IRI). Furthermore, DCs are involved in the acute/chronic rejection of solid organ transplantation and mediate transplant tolerance as well. Advancing our knowledge of the biology of DCs will aid development of new approaches to treat many cardiovascular diseases, including atherosclerosis, cardiac IRI and transplantation.
Collapse
Affiliation(s)
- Yi Zhang
- Yi Zhang, Cuihua Zhang, Department of Internal Medicine, Medical Pharmacology and Physiology and Nutritional Sciences, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, United States
| | | |
Collapse
|
19
|
Persson EK, Jaensson E, Agace WW. The diverse ontogeny and function of murine small intestinal dendritic cell/macrophage subsets. Immunobiology 2010; 215:692-7. [PMID: 20580119 DOI: 10.1016/j.imbio.2010.05.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 05/20/2010] [Indexed: 12/21/2022]
Abstract
Intestinal dendritic cell and macrophage subsets are believed to play key roles in maintaining intestinal homeostasis in the steady state and in driving protective immune responses in the setting of intestinal infection. This mini-review focuses on recent progress regarding the ontogeny and function of small intestinal lamina propria dendritic cell/macrophage subsets. In particular we discuss recent findings suggesting that small intestinal CD103(+) dendritic cells and Cx3cr1(+) cells derive from distinct precursor populations and that CD103(+) dendritic cells represent the major migratory population of cells with a key role in initiating adaptive immune responses in the draining mesenteric lymph node. In contrast, Cx3cr1(+) cells appear to represent a tissue resident population, phenotypically indistinguishable from tissue resident macrophages. These latter observations suggest an important division of labour between dendritic cell/macrophage subsets in the regulation of intestinal immune responses in the steady state.
Collapse
|
20
|
Abstract
Innate immunity, with macrophages playing a central role, is critically important in the pathogenesis of RA. Although environmental insults such as smoking have been implicated in the initiation of rheumatoid arthritis (RA) in patients who express the shared epitope, the understanding of the role of innate immunity in the pathogenesis of this disease is also expanding. As the understanding continues to expand, enticing targets for new therapeutic interventions continue to be identified. This article focuses on cells of myelomonocytic origin, their receptors, and factors that interact with them.
Collapse
Affiliation(s)
- Angelica Gierut
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, Chicago, IL 60611
| | - Harris Perlman
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, Chicago, IL 60611
| | - Richard M. Pope
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, Chicago, IL 60611
| |
Collapse
|