1
|
Song HH, Choi H, Kim S, Kim HG, An S, Kim S, Jang H. Nitrogen-doped carbon quantum dot regulates cell proliferation and differentiation by endoplasmic reticulum stress. Anim Cells Syst (Seoul) 2024; 28:481-494. [PMID: 39364144 PMCID: PMC11448352 DOI: 10.1080/19768354.2024.2409452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/19/2024] [Accepted: 04/25/2024] [Indexed: 10/05/2024] Open
Abstract
Quantum dots have diverse biomedical applications, from constructing biological infrastructures like medical imaging to advancing pharmaceutical research. However, concerns about human health arise due to the toxic potential of quantum dots based on heavy metals. Therefore, research on quantum dots has predominantly focused on oxidative stress, cell death, and other broader bodily toxicities. This study investigated the toxicity and cellular responses of mouse embryonic stem cells (mESCs) and mouse adult stem cells (mASCs) to nitrogen-doped carbon quantum dots (NCQDs) made of non-metallic materials. Cells were exposed to NCQDs, and we utilized a fluorescent ubiquitination-based cell system to verify whether NCQDs induce cytotoxicity. Furthermore, we validated the differentiation-inducing impact of NCQDs by utilizing embryonic stem cells equipped with the Oct4 enhancer-GFP reporter system. By analyzing gene expression including Crebzf, Chop, and ATF6, we also observed that NCQDs robustly elicited endoplasmic reticulum (ER) stress. We confirmed that NCQDs induced cytotoxicity and abnormal differentiation. Interestingly, we also confirmed that low concentrations of NCQDs stimulated cell proliferation in both mESCs and mASCs. In conclusion, NCQDs modulate cell death, proliferation, and differentiation in a concentration-dependent manner. Indiscriminate biological applications of NCQDs have the potential to cause cancer development by affecting normal cell division or to fail to induce normal differentiation by affecting embryonic development during pregnancy. Therefore, we propose that future biomedical applications of NCQDs necessitate comprehensive and diverse biological studies.
Collapse
Affiliation(s)
- Hyun Hee Song
- Department of Life Science, Jeonbuk National University, Jeonju, Republic of Korea
| | - Hyunwoo Choi
- Department of Animal Science, Jeonbuk National University, Jeonju, Republic of Korea
| | - Seonghan Kim
- School of Chemical Engineering, Clean Energy Research Center, Jeonbuk National University, Jeonju, Republic of Korea
| | - Hwan Gyu Kim
- Department of Life Science, Jeonbuk National University, Jeonju, Republic of Korea
| | - Sangmin An
- Department of Physics, Jeonbuk National University, Jeonju, Republic of Korea
| | - Sejung Kim
- School of Chemical Engineering, Clean Energy Research Center, Jeonbuk National University, Jeonju, Republic of Korea
- Department of JBNU-KIST Industry-Academia Convergence Research, Jeonbuk National University, Jeonju, Republic of Korea
| | - Hoon Jang
- Department of Life Science, Jeonbuk National University, Jeonju, Republic of Korea
- Quantabiom Co., Ltd., Jeonju, Republic of Korea
| |
Collapse
|
2
|
Chen S, Zhang JQ, Chen JZ, Chen HX, Qiu FN, Yan ML, Chen YL, Peng CH, Tian YF, Wang YD. The over expression of long non-coding RNA ANRIL promotes epithelial-mesenchymal transition by activating the ATM-E2F1 signaling pathway in pancreatic cancer: An in vivo and in vitro study. Int J Biol Macromol 2017; 102:718-728. [PMID: 28344092 DOI: 10.1016/j.ijbiomac.2017.03.123] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 03/07/2017] [Accepted: 03/21/2017] [Indexed: 11/27/2022]
Abstract
This study aims to investigate the roles of lncRNA ANRIL in epithelial-mesenchymal transition (EMT) by regulating the ATM-E2F1 signaling pathway in pancreatic cancer (PC). PC rat models were established and ANRIL overexpression and interference plasmids were transfected. The expression of ANRIL, EMT markers (E-cadherin, N-cadherin and Vimentin) and ATM-E2F1 signaling pathway-related proteins (ATM, E2F1, INK4A, INK4B and ARF) were detected. Small molecule drugs were applied to activate and inhibit the ATM-E2F1 signaling pathway. Transwell assay and the scratch test were adopted to detect cell invasion and migration abilities. ANRIL expression in the PC cells was higher than in normal pancreatic duct epithelial cells. In the PC rat models and PC cells, ANRIL interference promoted the expressions of INK4B, INK4A, ARF and E-cadherin, while reduced N-cadherin and Vimentin expression. Over-expressed ANRIL decreased the expression of INK4B, INK4A, ARF and E-cadherin, but raised N-cadherin and Vimentin expressions. By inhibiting the ATM-E2F1 signaling pathway in PC cells, E-cadherin expression increased but N-cadherin and Vimentin expressions decreased. After ANRIL was silenced or the ATM-E2F1 signaling pathway inhibited, PC cell migration and invasion abilities were decreased. In conclusion, over-expression of lncRNA ANRIL can promote EMT of PC cells by activating the ATM-E2F1 signaling pathway.
Collapse
Affiliation(s)
- Shi Chen
- Department of Hepatobiliary Surgery, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, P.R. China; Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, PR China; Research Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jia-Qiang Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, PR China; Research Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiang-Zhi Chen
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, PR China; Research Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Department of Hepatobiliary Surgery, Union Hospital, Fujian Medical University, Fuzhou 350001, PR China
| | - Hui-Xing Chen
- Department of Hepatobiliary Surgery, Union Hospital, Fujian Medical University, Fuzhou 350001, PR China
| | - Fu-Nan Qiu
- Department of Hepatobiliary Surgery, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, P.R. China
| | - Mao-Lin Yan
- Department of Hepatobiliary Surgery, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, P.R. China
| | - Yan-Ling Chen
- Department of Hepatobiliary Surgery, Union Hospital, Fujian Medical University, Fuzhou 350001, PR China
| | - Cheng-Hong Peng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, PR China; Research Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yi-Feng Tian
- Department of Hepatobiliary Surgery, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, P.R. China.
| | - Yao-Dong Wang
- Department of Hepatobiliary Surgery, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, P.R. China.
| |
Collapse
|
3
|
Kharizinejad E, Minaee Zanganeh B, Khanlarkhani N, Mortezaee K, Rastegar T, Baazm M, Abolhassani F, Sajjadi SM, Hajian M, Aliakbari F, Barbarestani M. Role of spermatogonial stem cells extract in transdifferentiation of 5-Aza-2'-deoxycytidine-treated bone marrow mesenchymal stem cells into germ-like cells. Microsc Res Tech 2016; 79:365-73. [PMID: 26969916 DOI: 10.1002/jemt.22639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 01/19/2016] [Accepted: 01/24/2016] [Indexed: 01/22/2023]
Abstract
As one of the induced pluripotent stem cells (iPSCs) methods, spermatogonial stem cells (SSCS ) extract is considered as new approach in stem cell therapy of infertility. 5-aza-2'-deoxycytidine (5-aza-dC) inhibits methyltransferase enzyme, and induces gene reprogramming; herein, the effects of SSCS extract incubation in 5-aza-dC-treated bone marrow mesenchymal stem cells (BMMSCs) has been surveyed. BMMSCs were isolated from femurs of three to four weeks old male NMRI mice, and the cells at passage three were treated with 2 µM 5-aza-dC for 72 hours. SSCs were isolated, cultured, and harvested at passage three to collect SSCS extract; BMMSCs were then incubated with SSCS extract in the three time periods: 72 hours, one week and two weeks. There were five groups: control, sham, extract, 5-aza-dC and extract-5-aza-dC. After one week of incubation, flow cytometry and real-time polymerase chain reaction (PCR) exhibited high levels of expression for β1- and α6-integrins and promyelocytic leukaemia zinc finger (PLZF) in extract and extract-5-aza-dC groups (P < 0.05 vs. control and 5-aza-dC), and cells in these two groups had two forms of morphology, round and fusiform, similar to germ-like cells. 5-aza-dC had no significant effects during the three time periods of evaluation. These data disclose the effectiveness of SSCs extract incubation in transdifferentiation of BMMSCs into germ-like cells; this strategy could introduce a new approach for treatment of male infertility in clinic.
Collapse
Affiliation(s)
- Ebrahim Kharizinejad
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Minaee Zanganeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Khanlarkhani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Rastegar
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Baazm
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Farid Abolhassani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mehdi Sajjadi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahdieh Hajian
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshte Aliakbari
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Barbarestani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Liu Y, Ostrup O, Li R, Li J, Vajta G, Kragh PM, Schmidt M, Purup S, Hyttel P, Klærke D, Callesen H. Long-term effect on in vitro cloning efficiency after treatment of somatic cells with Xenopus egg extract in the pig. Reprod Fertil Dev 2015; 26:1017-31. [PMID: 25145414 DOI: 10.1071/rd13147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 07/02/2013] [Indexed: 11/23/2022] Open
Abstract
In somatic cell nuclear transfer (SCNT), donor cell reprogramming is considered as a biologically important and vulnerable event. Various donor cell pre-treatments with Xenopus egg extracts can promote reprogramming. Here we investigated if the reprogramming effect of one treatment with Xenopus egg extract on donor cells was maintained for several cell passages. The extract treatment resulted in increased cell-colony formation from early passages in treated porcine fibroblasts (ExTES), and increased development of cloned embryos. Partial dedifferentiation was observed in ExTES cells, shown as a tendency towards upregulation of NANOG, c-MYC and KLF-4 and downregulation of DESMIM compared with ExTES at Passage 2. Compared with our routine SCNT, continuously increased development of cloned embryos was observed in the ExTES group, and ExTES cloned blastocysts displayed hypermethylated DNA patterns and hypermethylation of H3K4me3 and H3K27me3 in ICM compared with TE. All seven recipients became pregnant after transferral of ExTES cloned embryos and gave birth to 7-22 piglets per litter (average 12). In conclusion, our results demonstrate that one treatment of porcine fibroblasts with Xenopus egg extract can result in long-term increased ability of the cells to promote their in vitro function in subsequent SCNT. Finally these cells can also result in successful development of cloned embryos to term.
Collapse
Affiliation(s)
- Ying Liu
- Department of Animal Science, Aarhus University, DK-8830 Tjele, Denmark
| | - Olga Ostrup
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark
| | - Rong Li
- Department of Animal Science, Aarhus University, DK-8830 Tjele, Denmark
| | - Juan Li
- Department of Animal Science, Aarhus University, DK-8830 Tjele, Denmark
| | - Gábor Vajta
- Department of Animal Science, Aarhus University, DK-8830 Tjele, Denmark
| | - Peter M Kragh
- Department of Animal Science, Aarhus University, DK-8830 Tjele, Denmark
| | - Mette Schmidt
- Department of Veterinary Reproduction and Obstetrics, University of Copenhagen, DK-1870 Frederiksberg C, Denmark
| | - Stig Purup
- Department of Animal Science, Aarhus University, DK-8830 Tjele, Denmark
| | - Poul Hyttel
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark
| | - Dan Klærke
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark
| | - Henrik Callesen
- Department of Animal Science, Aarhus University, DK-8830 Tjele, Denmark
| |
Collapse
|
5
|
Parris GE. Cell-Cell Fusion, Chemotaxis and Metastasis. INTERCELLULAR COMMUNICATION IN CANCER 2015:227-254. [DOI: 10.1007/978-94-017-7380-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Svanvik J, Shabo I. Review and rhyme--of birth of cancers and selfish epigenomes. Med Hypotheses 2014; 82:639-40. [PMID: 24612784 DOI: 10.1016/j.mehy.2014.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/30/2014] [Accepted: 01/31/2014] [Indexed: 10/25/2022]
Affiliation(s)
- Joar Svanvik
- Transplantation Center, SU, Sahlgrenska Hospital, SE413 45 Gothenburg, Sweden.
| | - Ivan Shabo
- Division of Surgery, Department of Clinical and Experimental Medicine, University of Linkoping, Sweden
| |
Collapse
|
7
|
Ooi J, Liu P. Delineating nuclear reprogramming. Protein Cell 2012; 3:329-45. [PMID: 22467264 DOI: 10.1007/s13238-012-2920-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Accepted: 02/04/2012] [Indexed: 12/13/2022] Open
Abstract
Nuclear reprogramming is described as a molecular switch, triggered by the conversion of one cell type to another. Several key experiments in the past century have provided insight into the field of nuclear reprogramming. Previously deemed impossible, this research area is now brimming with new findings and developments. In this review, we aim to give a historical perspective on how the notion of nuclear reprogramming was established, describing main experiments that were performed, including (1) somatic cell nuclear transfer, (2) exposure to cell extracts and cell fusion, and (3) transcription factor induced lineage switch. Ultimately, we focus on (4) transcription factor induced pluripotency, as initiated by a landmark discovery in 2006, where the process of converting somatic cells to a pluripotent state was narrowed down to four transcription factors. The conception that somatic cells possess the capacity to revert to an immature status brings about huge clinical implications including personalized therapy, drug screening and disease modeling. Although this technology has potential to revolutionize the medical field, it is still impeded by technical and biological obstacles. This review describes the effervescent changes in this field, addresses bottlenecks hindering its advancement and in conclusion, applies the latest findings to overcome these issues.
Collapse
Affiliation(s)
- Jolene Ooi
- Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | | |
Collapse
|
8
|
Abstract
Reprogramming of adult somatic cells into pluripotent stem cells may provide an attractive source of stem cells for regenerative medicine. It has emerged as an invaluable method for generating patient-specific stem cells of any cell lineage without the use of embryonic stem cells. A revolutionary study in 2006 showed that it is possible to convert adult somatic cells directly into pluripotent stem cells by using a limited number of pluripotent transcription factors and is called as iPS cells. Currently, both genomic integrating viral and nonintegrating nonviral methods are used to generate iPS cells. However, the viral-based technology poses increased risk of safety, and more studies are now focused on nonviral-based technology to obtain autologous stem cells for clinical therapy. In this review, the pros and cons of the present iPS cell technology and the future direction for the successful translation of this technology into the clinic are discussed.
Collapse
|
9
|
Gálvez P, Ruiz A, Clares B. El futuro de la medicina clínica hacia nuevas terapias: terapia celular, génica y nanomedicina. Med Clin (Barc) 2011; 137:645-9. [DOI: 10.1016/j.medcli.2010.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 12/03/2010] [Accepted: 12/14/2010] [Indexed: 01/06/2023]
|
10
|
Dey D, Evans GRD. Generation of Induced Pluripotent Stem (iPS) Cells by Nuclear Reprogramming. Stem Cells Int 2011; 2011:619583. [PMID: 22007240 PMCID: PMC3189620 DOI: 10.4061/2011/619583] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 06/18/2011] [Accepted: 06/22/2011] [Indexed: 01/04/2023] Open
Abstract
During embryonic development pluripotency is progressively lost irreversibly by cell division, differentiation, migration and organ formation. Terminally differentiated cells do not generate other kinds of cells. Pluripotent stem cells are a great source of varying cell types that are used for tissue regeneration or repair of damaged tissue. The pluripotent stem cells can be derived from inner cell mass of blastocyte but its application is limited due to ethical concerns. The recent discovery of iPS with defined reprogramming factors has initiated a flurry of works on stem cell in various laboratories. The pluripotent cells can be derived from various differentiated adult cells as well as from adult stem cells by nuclear reprogramming, somatic cell nuclear transfer etc. In this review article, different aspects of nuclear reprogramming are discussed.
Collapse
Affiliation(s)
- Dilip Dey
- Aesthetic and Plastic Surgery Institute, University of California, Irvine, Orange, CA 92868, USA
| | | |
Collapse
|
11
|
Cryopreservation and quality control of mouse embryonic feeder cells. Cryobiology 2011; 63:104-10. [PMID: 21810414 DOI: 10.1016/j.cryobiol.2011.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 07/07/2011] [Accepted: 07/08/2011] [Indexed: 11/23/2022]
Abstract
Stem cell research is a highly promising and rapidly progressing field inside regenerative medicine. Embryonic stem cells (ESCs), reprogrammed "induced pluripotent" cells (iPS), or lately protein induced pluripotent cells (piPS) share one inevitable factor: mouse embryonic feeder cells (MEFs), which are commonly used for ESC long term culture procedures and colony regeneration. These MEFs originate from different mouse strains, are inactivated by different methods and are differently cryopreserved. Incomprehensibly, there are to date no established quality control parameters for MEFs to insure consistency of ESC experiments and culture. Hence, in this work, we developed a bench-top quality control for embryonic feeder cells. According to our findings, MEFs should be inactivated by irradiation (30Gy) and cryopreserved with optimal 10% DMSO at 1K/min freezing velocity. Thawed cells should be free of mycoplasma and should have above 85 ± 13.1% viability. Values for the metabolic activity should be above 150 ± 10.5% and for the combined gene expression of selected marker genes above 225 ± 43.8% compared to non-irradiated, cryopreserved controls. Cells matching these criteria can be utilized for at least 12 days for ESC culture without detaching from the culture dish or disruption of the cell layer.
Collapse
|
12
|
Nowak-Imialek M, Kues W, Carnwath JW, Niemann H. Pluripotent stem cells and reprogrammed cells in farm animals. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2011; 17:474-497. [PMID: 21682936 DOI: 10.1017/s1431927611000080] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Pluripotent cells are unique because of their ability to differentiate into the cell lineages forming the entire organism. True pluripotent stem cells with germ line contribution have been reported for mice and rats. Human pluripotent cells share numerous features of pluripotentiality, but confirmation of their in vivo capacity for germ line contribution is impossible due to ethical and legal restrictions. Progress toward derivation of embryonic stem cells from domestic species has been made, but the derived cells were not able to produce germ line chimeras and thus are termed embryonic stem-like cells. However, domestic animals, in particular the domestic pig (Sus scrofa), are excellent large animals models, in which the clinical potential of stem cell therapies can be studied. Reprogramming technologies for somatic cells, including somatic cell nuclear transfer, cell fusion, in vitro culture in the presence of cell extracts, in vitro conversion of adult unipotent spermatogonial stem cells into germ line derived pluripotent stem cells, and transduction with reprogramming factors have been developed with the goal of obtaining pluripotent, germ line competent stem cells from domestic animals. This review summarizes the present state of the art in the derivation and maintenance of pluripotent stem cells in domestic animals.
Collapse
Affiliation(s)
- Monika Nowak-Imialek
- Institute of Farm Animal Genetics (FLI), Biotechnology, Mariensee, 31535 Neustadt, Germany
| | | | | | | |
Collapse
|